 AD-A275 989 o
| AT @
. v

ELECTE . I -
FEB22 134 T document kG p.ena??g;:“d \ e
k& {or public releﬁsﬁ.@&i * R

SOFTWARE COST ESTIMATING MODELS:
| A COMPARATIVE STUDY OF WHAT THE
, . MODELS ESTIMATE

-—

THESIS

|

| : George A, Coggins, Captain, USAF
o Roy C. Russell, Captain, USAF

‘| AFIT/GCA/LAS/93S-4
|
|

94-0551 v
I ‘B

R T e 0

DEPARTMENT OF THi AIR FORCE

- y AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY
v — e ——————]
: Wright-Patterson Air Force Base, Ohio

M4 2 18 117 ull

{ e e
eyt

|
i - -
| \
" AFIT/GCA/LAS/93S-4
| :
|
o "o .
J. * .‘i.",%: v 2 \qﬁ& ﬂi’: "
B g a i
¥, L \
on M ki, *)
w P
! SOFTWARE COST ESTIMATING MODELS:
JI A COMPARATIVE STUDY OF WHAT THE e
| MODELS ESTIMATE oo e
!/ NTIS Ci Akl f\Jv |
; THESIS DiiC 121 ! !
.: Uverrie e d o
: George A. Coggins, Captain, USAF ot v j
; Roy C. Russeli, Captain, USAF T R
f AFIT/GCA/LAS/93S-4 BY)
Di-t:ibut.on! ;
it 1
| _ T T A et 1
: Dt Speindi :
| |
i _ i
- Ao I |
| Approved for public release; distribution unlimited
|

—— e

The views expressed in this thesis are those of the authors
i and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

]

@ —s

AFIT/IGCA/LAS/935+4

SOFTWARE COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF WHAT THE MODELS ESTIMATE

THESIS

Presented to the Facullv of the Scheol of Logistics and Acquisition Management
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degre 2 of

Master of Science in Cost Analysis

Gearge A. Coggins, B.S. Roy C. Russell, B.S.
Captain, USAF Captain, USAF

September 1993

Approved for public release; distribution unlimited

Acknowledgements

This research effort could not have been completed without the
assistance of several key individuals. We would iike to take this opportunity to . :-5
acknowledge these people.

We would like to thank Ray Kile for his thoughtful insights regarding
REVIC and Richard Maness of Martin Marietta for his assistance with SASET.
Our thanks to Wellington Kao, Karen McRitchie, and Dan Gallorath of SEER
Technologies for helping us understand SEER-SEM and to Jim Otte of PRICE
Systems for his help with PRICE-S. It would have been impossible to complete
this document without their assistance and patience in answering countless
qitestions about their respective models. We thank our thesis advisor, Dan
Ferens, for providing guidance and frequent feedback during this effort.

Finally, we would like to thank our wives and families for putting up with
their "absentee husbands". Chris thanks his wife, Lara, and daughter, Chelsea,
for their andless support and understanding. Andy thanks bis wife, Debbie, and
daughter, Jordan, for understanding the many times he couldn't be with them.

We couldn't have done it without you.

Andy Coggins and Chris Russsli

Table of Contents

~age

: ACKNOWIEAZEMENES ... ii
E . LISt OF FIQUIES ..o ettt re e e e eeea e v

|
} List Of Tables. . e vii
: ABSIract ... iX
{ Lo ItrodUCHION ..o e et 1

|
(RENEIAl ISSUGceiiiiiiee et e 1
SpeCfic Problem e 3
Research ObjectiVe ... e 4
; Scope of Re@search.............ccoociniii e e, 4
L DefiNitiONS it 5
,} THhESIS SITUCIUIEoceiie e e 7
H, Literature REVIBW ..o, 9
"' A OVBIVIBW ..ottt 9
e Software Development ISSUBSccoecviiiiiiiie e 9
| Ever-Increasing Size and Complexity...........cccccccooviiiiiiininenn, 9
g Software Sizing Problems. ... 11
Changing Requirements and Specifications... 13
Normalization Explained............cc.cccc oo e 14
Cost Model DesCriptionscoooviriiiiiiiiie e e, 15
| REVIC. e 15
' SASET . oottt et 17
| PRICE-S. . e e 18
i SEER-SEM ..o e 20
SUMMENY .ottt te e e eesre s arree e 21
| HE Methodologyo e e 22
N OVBIVIBW ..ot iicieie ettt e e et e e eee e e et 22
Phase 1. mdeoendent ANAIYSIS......iveieiit e 22
Phase 2. Validation and Concurrence...............cccccooovivveeeeeeeeee e, 24

“ i
\ !

] Page
- W FINdIngs ..o et e e eaa e 26
5 o Finding #1. Soitware Development Phases ...l 26
R Finding #2. Development Activities and Cost Elements........................ 38 .

I Finding #3. Source Lines of Code and i.anguage Oifferences.............. 47
» Finding #4. Key Model Attributes and ey Cost Drivers 54
. Finding #5. Implications ot Project Size on Model Qutput..................... 57
! Finding #6. Impact of Schedule Compression and Extensions 80
o Finding #7. Distinctive Characteristics of Model Data Bases....... 88
el rFinding #8. Resulis of Baseline Test €asecccooo i 91

|
3 V. Conclusions and Recommendationscococrvveorrmeeceeres oo, 100
i OVEIVIBW ...ttt v et eaa e e e et 100
: ll CONCIUSIONS ... oo e e100
l: ReCoOmMMENdatioNS...........ociiieii e e 102

|
b Appendix A: Checklist Used to Examine Cost Madelsc.ccooein i 104
' Appendix B: Model Inputs Sheets for the Baseline Test Case......................... 107
g i Bibliography R et e EareetaerieoaeaEsteeebteteaaeaaaeeaa e e tan bt e e eeas 154
| VIt e, e 158

|

|

|

|

|

j
: List of Figures
JI Page
! 1-1 Distribution of Software and Hardware Costs BT OUU TR 2
. { . 2-1 Effect of Adding Personnel to a Software Projectcv 11
4-1 Ripple Effect for Calculating Activity Estimates.................ccccciiin. 32
- 42 Example of PRICE-S Report with COst EISMENtSoccvrrerreveer 45
4-3 Example of SEER-SEM, ver 3.21 Report with Labor Categdries 45
| 4-4 Sample Ada and Assembly Program Operation.c..ccceeeeiin e 47
- i 4-5 Impact of REVIC Inputs for Persuinnel Capabilitias anu Experience 56
, 4-6 Impact of REVIC Inputs for Development Environment 57
| 4-7 Impact of REVIC Inputs for Target Environment..................ccccoooiis 57
' 4-8 Impact of REVIC Inputs for Project Requirements......................ccccees 58
4-5 Effect of Application on Cost for PRICE-S..............iiiii 61
. ‘: 4-10 Effect of New Design on Cost for PRICE-Scooooeiiieiiiiiii e 61
f 4-11 Effect of New Code on Cost far PRICE-Sccccocovviiveereceeeve e 62
| 4-12 Effact of Productivity Factor on Cost for PRICE-Sooooovveeeio, 62
4-13 Effect of Platform on Cost for PRICE-S ... 63
” i 4-14 Effect of Complexity on Cost for PRICE-Sc..oo oo, 63
) ! 4-15 Technology and Environment Impacts for SEER-SEM............................ 64
: l 4-16 Impact of SEER-SEM Inputs for Personnel Capabilities and
'| EXPOIIONCE ...t 65
4-17 Impact of SEER-SEM Inputs for Development Environment................... 65
; | 4-18 Impact of SEER-SEM Inputs for Target Environment 66
4-19 Impact of SEER-SEM Inputs for Project Requireménts 66
4-20 Functional Relationship Between Size and Effort for REVIC.................. 69

4-21 Functional Relationship Between Size and Effort for Various
Software Types in SASET ... e 72

4-22

4-23
4-24
4-25

Functional Relationship Between Size and Effort for
Software Classes in SASET ...

Functional Relationship Retween Size and Effort for
Schedule Penalty Factors for SASET ...
Effect of Schedule Constraints on Cost for PRICE-S

Vi

Various

SEER-SEM

i

2-1
2-2
2-3
4-1

4-2
4-3
4-4
4-5

4-6

47
4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20

List of Tables

Examples of Software Content in Recent Projects..................... P18‘0g
REVIC Parameters by Categoryccooovveeeviiniiiiiiieciviiiniieiiieci e, 16
PRICE-S Input Variablesccooeeen e 19
DoD-STD-2167A Phases/Activities and Key Formal Reviews or

AUIES ..ot e b s e s e 26
Correlation Matrix of Software Development Phasesc.c...ee 27
Defau't Allocation Percentages for REVIC Development Phases............ 29
Default Allocation Percentages for SASET Development Phases........... 30
Defauit Allocation Percentages for SEER-SEM Platform Knowledge

BaS .o 34
Default Aflocation Percentages for SEER-SEM Development

Method Knowledge Baseccccoeeviivniiciiiiiin e 35
Allocation Pcrcentages for SEER-SEM Development Phases 36
Descriptions of SEER-SEM's Development Methodsc.ococn o 36
Generai Development Activities included in Model Estimates................. 38
Specific Cost Elements/Activities Estimated by Each Model 39
REVIC Cost Elements and Definitions. ... 40
Default Allocation Percentages for REVIC's Activities..............ccccceeeee. 41

SASET Cost Elements and Definitionsccooeeneeiiiieiiiiciin 42
PRICE-S Cost Elements and Definitionscccocciiiiiii i, 44
SEER-SEM Cost Elements and Definitions ... 46
Sample SASET Caiculations for New HOL Equivalent SLOC................. 50
Language Selections within PRICE-S................cooi i 52
L.anguage Selections within SEER-SEM. ... 53
Categorization of Key Model Attributes 55
Default Values for SASET Software Types..............coovoiviciiiiiiiinin e, 89

Vii

Ry

4-21
4-22
4-23

4-24

4-25

4-26

4-27
4-28
4-29
4-30
4-31

Default Values for SASET Software Cilasses.............ccccccoiviiniin.] gge
Correlation Mairix of Project Size Relationships..........cccoovvvvvviiiiinn 68
Effort Equations Used by REVICcccoiiiiiiii e, 68
Impact of Breaking Large CSClI into Multiple Smaller CSCls in

S A S E T et e 73
Impact of Breaking Large CSC! into Multiple Smaller CSCls in

PRICE-S .. .ottt eie ettt s taesae et esar e e e ssaensa e s earasasesaaeene 76
impact of Breaking Large CSC! into Multiple Smalier CSCls in

SEER-SEM. ..o et 79
Impact of Schedule Compression and Extensions...................cccvveeeieee. 81
Scheduie Penalty Factors for REVIC.........c...oooocieivieiiiccieee e, 81
Impact of Stretching Out Full-Scale impiementation for SEER-SEM....... 86
Summary of Key Maodel Inputs for Baseline Test Case............................ 93
Baseline Test Case Results for Each Mcdel in Manmonths.................... 95

viii

AFIT/GCA/LAS/93S-4

Abstract

The objective of this thesis was to develop a consolidated document
which highlights the differences in definitions, assumptions, and methodologies
used by the REVIC, SASET, PRICE-S, and SEER-SEM cost models and
examines the impact of these differences on the resuiting estimates. To achieve
this objective, the foliowing research questions were investigated: (1) What
differences exist between the cost models? (2) How do these differences
impact the resuiting cost estimates? (3) To what degree can we explain and
adjust for differences between cost modeis?

Seven specific areas of model differences were addressed inciuding: (1)
software development phases, (2) development activities arnid cost elements, (3)
source lines of code and language differences, (4) key model attributes and key
cost drivers, (5) implications of prcject size on model output, (6) impact of
scheduie compression and extensions, and (7) distinctive characteristics of
model data bases.

A hypothetical baseline test case was developed to determine if users
could explain and adjust for known model differences. Although the researchers
felt the differences could be partially explained, it was very difficult to logicaily
adjust for the differences. It is tha researchers' opinion that the underlying

equations and model assumptions are so dissimilar that objective normalization

efforts are virtuaily impossible for the average modsl user.

SOFTWARE COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF WHAT THE MODELS ESTIMATE

L_Introduction

General Issue

The computer revolution has dramatically impacted all facets of scciety.
Frem manned space flight to Nintendo™ games, computers have become an
integral part of daily life. We use computers to write term papers, analyze
properties of new drugs, and navigate aircraft. Most chiidren gain basic
computer skills in elementary school through interactive learning sessions and
on-line games.

However, within the Department of Defense (DoD), computer applications
go far beyond games. The basic role of the military is to defend and protect the
national interests of the United States. In sume instances, existing war fighting
capability cannot adequately address perceived threats. When this occurs, the
military community may initiate a new weapons system acquisition.

[gl l_ rai . -~ . _.
raceu w ap y 1anging v gy ail
t

weapon systems are increasingly dependent on computers and associated
software. As shown in Figure 1-1, current trends indicate computer software

development and maintenance costs for military systems generally exceed those

of the hardware system (1:18).

10¢

60 |~ \\\\
N

ol \\\Qm

i+ N oag \\ Muntenance

1955 1970 1985

Percont of tatal costs

Yesr

Figure 1-1. Distribution of Software and Hardware Costs (1:18)

As new military applications of computers were discovered, software
acquisition costs within the DoD skyrocketed. Software costs increased from
approximately $3.3 billion in 1974 to $10 billion in 1984 (2:1462). This rapid
growth in software costs shows no signs of abating. A recent study of DoD
mission critical software costs predicts a 12 percent annual growth rate from
$11.4 billion in 1985 to $36 billion in 1995 (2:1462). Given the current
environm nt of spiraling software costs and tight budget constraints, the need
for accurate estimates cannot be un.~rstated.

Unfort nately, software cos’. estimating capabilities have not kept pace
with the explosive growth of softwar > development. Parametric software cost
models used in the early 1980s were accurate to within 20 percent of the
project's actual cost only 68% of the time (1:495); however, no evidence of

significant improvements in cost estimation models was noted in several recent

studies of parametric cost models (3, 4, 5, 6).

This does not imply cost analysts should avoid using parametric cost
models. To the contrary, in the early stages of many projects when little actual
cost data is available, parametric cost models are ideal for generating initial
"ballpark" estimates. However, users should realize all new projects have a
certain degree of inherent risk and no model can estimate the cost of all possibie
contingencies for all projects. Even if such a model was available, analysts are
not automatically guaranteed good estimates. A software cost estimating medel,
like any other computer-based model, "is a 'garbage in - garbage cut' device: if
you put poor sizing and attribute-rating data in on one side, you will receive poor
cost estimates out ihe other side" (1:308).

Cost analysts have a variety of parametric models available to aid
preparation of software cost and schedule estimates. Currently, the four Air
FForce preferred software cost estimating models are: REVIC, SASET, PRICE-S
and SEER-SEM (7). Each model has its own terminology, assumptions,
estimating methouologies, strengths, and limitations. A thorough understanding

of the models and their differences is essential for accurate, credible: estimates.

Specific Problem

No singie or consolidated document exists which explaine the techr;cal
characteristics of the four preferred software cost models. As a resuit, it is
difficult to evaluate and compare cost estimaies generated by different cost
models. Analysts must refer to numerous users manuals, contact softwara
maodel vendors, or rely on second-hiand information when preparing and

comparing estimates from different models. In many instances, existing

documentation does not fully explai:i the intricacies of the models. More

importantly, many users are unaware of the differences between models or what

impact these differences have on the resulting estimates.

Research Objective

The objective of this thesis is to develop a consolidated document which
highlights the differences in definitions, assumptions, and methodologies used
by the REVIC, SASET, PRICE-S, and SEER-SEM cost models and examines the
impact of these differences on the resulting estimates. To achieve this objective,

the following questions must be investigated:

(1) What differences exist between the cost models?

(2) How do thase differences impact the resulting cost estimates?

(3) To what degree can we explain and adjust for differences between
cost models?

Scope of Research

This research effort was undertaken to support the Air Force Cost
Analysis Agsncy (AFCAA). Specifically, AFCAA requested a technical analysis
of the REVIC, SASET, PRICE-S, and SEER-SEM software cost estimating
models. As a result, only these four models were chosen for analysis. No
research effort was expended researching other existing cost estimating models
such as SLIM, COSTMODL, System-4, or Checkpoint.

This effort did not specifically research the estimating accuracy between
models. Research was conducted with the intent of explaining the differences
between the models and examining the impact of these differences on the

resulting estimates. Cost analysts should consider the strengths and

weaknesseas of each model as well as availability of information, time

i
;

constraints, and the nature of the proposed project prior to selecting a specific

model.

Definitions
The following definitions are provided to ensure the reader and
researchers have a mutual understanding of key terms and concepts used in this

thesis.

Algorithm. A mathematical set of orderad steps leading to the optimal
solution of a problern in a finite number of operations (8:557).

Analogy. An estimating methodology that compares the proposed system
to similar, existing systems. After adjusting for complexity, technical, or physica!
differences, the cost estimator extrapolates the estimated cost for the new
system using cost data from the existing system (9:A-5).

CSCl, CSC, and CSU. Larye software development efforts are generally
broken down into smatler, more manageable entities called computer software
configuration items (CSCls). Each CSCI may be further broken down into
computer system components (CSCs) and each CSC may be further broken
down into computer software units (CSUs) (10:B-14).

Cost Estimating. "The art of collecting and scientifically studying costs

and related information on cu: rent and past activities as a basis for projecting

s &s aii input 0 the decision process for a future activity.

T
L

Cost Model. A tool consisting of one or more cost estimating
relationships, estimating methodologies, or estimating techniques and used to

predict the cost of a system or its components (9:A-23).

Expert Opinion. An estimating methodology which queries technical
experts and users 1egarding the estimated cost of a proposed system (8:581).

Hardware. Cansists of the physical and electrical components of a
computer system including items such as circuits, disk drives, wiring, and
associated peripherals involved in the actual functions of the computer (12).

Normalization. The process of rendering constant or adjusting for known
differences (8:594).

Parametric Cost Model. A mcdel that employs one or more cost
estimating relationships for measurement of costs associated with the
development of an item based on the project's technical, physical, or other
characteristics (8:596).

PRICE-S. Programmed Review of Information for Costing and
Evaluation - Software. A commercial software cost estimatirig mode! distributed
by PRICE Systems, a division of Martin Marietta Corporation. See the Cost
Madel Description section in Chapter |l for details regarding this model.

REVIC. Revised Enhanced Version of Intermediate COCOMO. A non-
proprietary parametric cost model used to estimate software costs. See the Cost
Model Description section in Chapter Il for details regarding this model.

SASET. Software Architecture Sizing and Estimation Tool. A non-
proprietary parametric cost model used to estimate software costs. See the Cost
Model Description section in Chapter |l for details regarding this model.

SEER-SEM. System Evaluation and Estimation of Resources - Software

-Estimation Model. A commercial software cost estimating model developed by

Galorath Associates, Incorporated. SEER-SEM is currently site-licensed for Air

Force use. See the Cost Mode! Description section in Chapter Il for details

regarding this model.

|
-
i
!
i

Software. The combination of computer programs, data, and
documentation which enable computer equipment to perform computational or
central functions (12).

Software Development Cycle. The software development cycle is

typically broken into 8 phases: (1) System Requirements Analysis and Design,
(2) Software Requirements Analysis, (3) Preiiminary Design, (4) Detailed
Design, (5) Code and CSU Testing, (6) CSC Integraticn and Testing, (7) CSCI
Testing, and (8) System Testing. Software maintenance is often considered the
ninth phase in this sequence (10).

Software Maintenance. Software does not break or wear out;

maintenance refers to corrective, adaptive, and perfective charniges to software.
Changes result when correcting software errors (corrective), responding to
changing data or processing requirements (adaptive) and improving features
through erihancements (perfective) (13:4).

Source Line of Code (SLOC). For purposes of this research effort, SLOC

is defined as all lines of executable and non-executable code with the exception
of embedded comments. See Chapter IV, Findings, for specific model
definitions for SLOC.

Thesis Structure

investigative questions. The information gained by answering these questions
will allow the researchers to compile a consolidated document which highlights
the differences between the cost modeis and examines how these differences

impact the cost estimates. Chap’er ll, Literature Review, reviews recent

publications in the area of software cost estimating and describes each of the

cost models selected for review. Chapter iil, Methodology, explains how the
! research effort was structured to gather information needed to answer the
investigative questions. Chapter IV, Findings, analyzes the information obtained

and answers the investigative questions. Chapter V, Conclusions and

Recommendations, draws an overall conclusion regarding the differences
between cost models based on the literature review and information obtained

and analyzed in the preceding sections of the thesis. Chapter V aiso identifies

areas where further rasearch may be warranted.

|I. Literature Review

———

Overview

This chapter reviews recent publications and research efforts in the field
of software cost and schedule estimation. Specifically, this review (1) examines
software development issues wiich impact the accuracy of cost estimates, (2)
explains a normalization technique for comparing estimates generated by
different cost models, and (3) provides descriptions of the cost models reviewed

in this research effort.

Software Deveiopment lssues

Software developers and cost estimators seldom use the phrase "on-time
and under-budget" ‘when describing their latest software project. Three software
development issues contribute to this problem: ever-increasing project size and
complexity, software sizing problerns, and unstable software requirements and
specifications.

Ever-Increasing Size and Complexity. Since the beginning of software
development, there has been a race between the capabilities of the toois
available to programmers and the increasing complexities and sizes of the
programs they wera called upon to create (14:6). Early programming languages,
such as Assembly language, required tne programmer to transform a problem
from its mathematical forni iito the step-by-step format demanded by the
language. Assembly ianguage programming was a slow, time-consuming
method of generating code. However, high ordered languages (HOL) such as

FORTRAN and Ada increased programmer efficiency because each line of HOL

generated several Assembly commands.

As programming efficiency increased, the size of software programs also
increased. Table 2-1 provides examples of software development efforts for

several recent projects.

Table 2-1. Examples of Software Content in Recent Projects (15:100, 101, 104)

1989 Lincoln Continental 83,517 35 1.8
Lotus 1-2-3 v. 3 400,000 263 7.0
Citibank Autoteller 780,000 150 13.2
Space Shuttle 25,600.000 22,096 1200.0

As the preceding table indicates, software programming has become a more
intricate, and costly, component of major projects.

One apparent solution for tackling large projects is to hire more
programmers. However, empirical evidence indicates this approach is seldom
applicable when dealing with software projects (16:18). Frederick Brooks,

author of The Mythical Manmonth, notes software programming is not a perfectly

partitionable task - simply adding people does not guarantee the job wiil be
accomplished sooner (16:18). Although total effort initially decreases as workers
are added, total effort actually increases as more and more workers are added
to a project. Brooks attributes this effect to increased intercommunication neecs
(16:18). As more workers are added, more intercommunication is necessary to
ensure all the workers work toward the same goal. Beyond a certain point, the
benefits gained by adding more workers are outweighed by the increased

communication needs (16:19). Figure 2 -1 illustrates Brooks' Law.

10

Months

Figure 2-1. Effect of Adding Personnel to a Software Project (16:19)

Not cnly are projects becoming larger, but project complexity is also
increasing. In his article "No Silver Buliet. Essence and Accidents of Software

|
' Engineering”, Brooks states:

Software entities are more complex for their size than perhaps anv ather
| human construct because no two parts are alike (at least above the
] statement level) ... in this respect, software systems differ profoundly
i from computers, buildings, or automobiles, where repeated elements
! abound. (17:11)
|

/ Software Sizing Problems. Estimating project size has hean described as

N a very difficult undertaking "often considered to require black magic” (18:19). To
measure size, one r:quires a measurement technique. ,\lthough a number of
sizing methodologies exist, two of the most commonly used methods are
counting source lines of code (SLOC) and using function point aigorithms (or

some variation of the basic function point algorithm).

11

One of the most common techniques for measuring project size is
counting the number of SLOC. Many software cost estimating modeis assume
there is a relationship between SLOC developed and estimated development
cost (1:58; 14:25; 19:5-2; 20:1). This relationship appeals to the layman since it
seems logical for development costs to increase as project size increases.
(Note: These models also take many other factors into account when generating

cost estimates. See the_Cost Model Description section in this chapter for

additional information on each modei).

Using lines of code as a sizing technique presents an unusual paradox.
Moét cost models require an estimated number of lines of code, yet the actual
number of lines developed are not known until after the project 's compieted.
Overall, the SL.OCC measurement technique was criticized throughout the
literature. Most importantly, few people currently agree on wnat constitutes a
line of code (5:22). This situation is attributed to a lack of well-defined rules for
counting lines of code in each programming language (1:58; 21:13). For
example, should we count only procedural lines of code or do we include
declarative statements? How do we account for comments or blank lines of
code? Do we count prototyped code or only delivered source lines of code?

Differing rules for counting SLOC is not the only factor contributing te
sizing problems. There is also a lack of agreement for conversion factors when
comparing code written in different languages. For example, high order
languages are considered more efficient from a programming viewpoint than
Assembly because one line of HOL code generates sever.i lines of Assembly
code. Therefore, when comparing a program written in Assembly code and
another written in Ada code, an estimator should use a convarsion factor to

ensure an "apples-to-apples" comparison. One list of conversion factors claims

12

one line of COBOL is equivalent to three lines of Assembly, one line of PL1
equals 4.5 lines of Assembly, and 1 line of Smalltalk equa!s 15 lines of Assembly
(21:14). However, there is currently no universally accepted convention for
these equivalencies (21:14).

Due to the criticisms of using SLOC when measuring project size, several
alternative techniques have been suggested. Function points, introduced by
Ailan Albrecht, are computed from five attributes of a program: the number of
external input types, external output types, logicai internal types, external
interfaces types and external inquiry types (22:1-2). Several variations on
Albrecht's function peints have evolved including Adjusted Function Points, Mark
Il Function Points, and Capers Jones' Feature Points. Although some
independent studies have verified function points are superior to SLOC for
estimating cost and effort for business-related projects (22:2-3), a recent study
indicates function points are less useful for estimating real-time projects (4:45).

Changing Requirements and Specifications. According to one software

developer, the hardest part of building a software system is deciding exactiy
what to build. No other step in the development process cripples the resulting
system moie than a poorly defined system and no other part is more difficult to
later rectify (17:17). As projects become larger and more complex, the
importance of well-defined specifications cannot be understated. However,
translating customer needs to written documenits understandable by all parties
continues to be a very difficult endeavor.

In his book, The Scftware Development Proiect: Planning and Managing,

Phillip Bruce identifies well-defined software requirements as the cornerstone of
a weli-defined, well-understood, and weli-costed software develcpment effort

(23:17). Vague, pecorly written requirements hamper pricing and design efforts

13

by the developing contractor. Many times, program deficiencies resuiting from
poor requirements are not identified until the acceptance demonstration when
the customer realizes the software does not have certain displays, interactive
menus, or other desired features (23:17).

This does not suggest good requirements are carved in stcne and never ’
change. Software requirements are st'bject to change throughout the
development process. Many factors contribute to these changes: the customer
desires a more functional software package, new technologies are developed,
or funding and mission pricrities change. According to Alan Davis, user needs
are constantly evolving; therefore, the system under development is always
aiming at a moving target (24:1454).

However, the very nature of the software itself is often biamed for this
changeability. Paul Rook made the following observations about software

characteristics in a Software Engingering Journal article:

(1) Software has no physical appearance.
(2) ltis deceptively easy to introduce changes into software.

(3) Effects of software changes propagate explosively. (25.7)

Normalization Explained

When asked how much they are willing to pay for a car, most consumers
will adjust their offer price based on the presence {or absence) of varicus
features such as air-conditioning, compact disk player, or other interior
upgrades. This process of making adjustments for known differences is

commonly referred to as normalization. The concept of normalization is

14

particularly important when comparing cost estimates generated by different cost
models.

According to The AFSC Cost Estimating Handbook, proper use of any

cost model requires a thorough analysis of the model's assumptions and
limitations as well as its capabilities and features (9:8-6). This handboock points
out several key questions the cost estimator should resolve before using any

model to prepare an estimate. Specifically:

(1) What phases of the acquisition cycle are included in the model?
(2) Is the data required to use the model available?

(3) What units of measure are used by the modei (dollars or
manmonthis)?

(4) What is the content of the data base nan which the mode! was
derived? ’

(5) What is the range of input .aiues for which the model is valid? (9:8-6
to 8-10)

Unless the estirator uncerstand= i« underlying assumptions of the model,
which phases and activity costs are included it the estimate, and other such
questions, it is impossible to fairly compare one modei's cost estimate to a

different model's cost estimate.

viodei Descriptions

VIC. Revised Enhanced Version of Intermediate COCOMO is a non-

proprietary cost medel currently managed by the Air Force Cost Analysis
Agency. Raymond L. Kile developed REVIC in response to an Air Force

Centract Management Division initiative to improve oversight of government

£ T — oy ‘\‘ e

s e R A R R

P — 0.0 1) A Syt P 4, \ T st P L TR

software contract and for better support of software contract proposal

evaluations (20). REVIC is a variation of the intermediate CCCOMOQ described

¥

in Dr. Boehm's book Software Engineering Economics (1). According to the

by

i

REVIC user manuai, the model estimates develocpment life cycle costs for

software development from requirements analysis through completion of the ‘
m-l software acceptance testing and a fifteen year mait:ic vanice life cycle (20:1). All
equations used by the REVIC model are published in the REVIC user's guide.
The only required input necessary for running REVIC is a SLOC estimate
‘ for the proposed project (20:4). However, the user can tailor an estimate by
| adjusting various categorical variaties used by REVIC. The madel has four
- : primary input categories: personnel, computer, product, and project attributes
- :15 with 19 subordinate attributes. See Table 2-2 for REVIC inputs.
o]
g Tabie 2-2. REVIC Parameters by Category (20)
L
i i Analysi Capability ACAP | Requirements Volatility (Note 1) | RVOL
i | Programmer Capability PCAP | Required Reliability RELY
e Applications Experience AEXP | Dala Base Size DATA
, Virtuat Machine Experience VEXP | Complexity CPLX
o Language Experience LEXP | Required Reuse (Note 1) RUGE
id
! Modein Programming Practices MODP | Time Constrainis TIME
5 Development Tools TOOL | Storage Limitatians STOR
i Project Security (Note 1) SECU | Virtual Machine Volatility VIRT
1‘ Development Schedule (Note 2) SCED | Computar Tumarouad Time TURN
’ N Management Reserve {(Note 1) MRES
Lo e ,

] Note 1: Additional paramisters not found in COCOMO.
3 Nota 2: REVIC accapts only the nomiral (1.00) vaiue tor SCED.

The user selects from available ratings for each parameter which range

from Very Low (VL) to Extremely High (XX). Each rating ranslaies v a

16

numerical value and when afl 19 values are multiplied together, an

! environmental factor is calculated. This environmental factor is then used in

i . REVIC's equations to calculate the project's schedule and cost.

! The REVIC model differs from COCOMO model in several ways. The

. primary difference between REVIC and COCOMO is the basic coefficients used
I in the model's equations (20:4). REVIC was calibrated exclusively on DoD
software development projects whereas COCOMO was not (13:5; 1:496). As a
result, different coefficients were calculated when regression techniques were
applied to the new set of calibration projects.

SASET. The Software Architecture Sizing and Estimation Yool is a non-
proprietary model developed by Martin Marietta Corporation for the Naval Center
for Cost Analysis (6:2-9). The Air Force Cost Analysis Agency is currently the
central Air Force focai point and sponsor for this model (7). SASET is a forward-
chaining, rule-based expert system utilizing a hierarchically structured
knowledge database to provide functional software sizing values and an optimal
software development schedule (26:1-2). COptimal development schedule refers
to a derived schedule . ased on historical data reflecting the minimum
development cost (26:1-3).

According to the SASET on-line tutorial, SASET uses a three-tiered
approach to obtain input regarding snvironmental, sizing, and complexity factors
related to propnsed system (12). These three tiers are accompanied by fourth
‘ and fifth tiers wrich gather maintenance and risk analysis information. Tier 1
l ' gathers information regarding type and class of software, prograniming
\ language, number of CSCls, and other development environmental fi:ctors. Tier
! 2 develops lines of code estimates based on user inputs regarding sottware

functions, CSCis, and CSCs.

o 17

[=

SASET's sizing methodology is unique among the four models reviewed
in this thesis. (New versions of SEER-SEM released since the beginning of this
research effort also address function point sizing). Most cost models require the
user to input the number of estimated lines of code; however, SASET aliows the
user to enter functional elements of the proposed system without any knowledge
of the estimated number of iines of code. SASET will generate a line of code
estimate based on the functionality specified by the user (12). The user also has
the option of directly inputting an independent size estimate.

Tier 3 describes the software complexity issues of the proposed system.
The user rates 20 complexity issues on a scaie of 1 (very complex) to 4 (simple}
(26:5-52). Examples of the compiexity issues include system requirements,
software documentation, development facilities, hardware constraints, software
interfaces, and software experience (29.5-52 to 5-55).

Tiers 4 and 5 are not necessary for development effort estimation. Tier 4

- defines the maintenance complexities and a maintenance schedule (12). Tier &

provides risk analysis on sizing, schedule, and budget data. SASET uses Monte
Carlo simulation techniques to create distribution curves and various tables of
risk assessment parameters (26:1-3).

PRICE-S. PRICE-S is a commercially available software cost model
distributed by PRICE Systems, a division of Martin Marietta Corporation.
PRICE-S operates in a Microsoft Windows environment and features pull-down
enus and an extensive on-line help facility. Due to its proprietary nature, all
equations used by the model are not published; however, the PRICE-S) “ ‘,

Reference Manual and other reports describe »ssential equations and expiain i

the methodologies used to develop the maodel (27, 28).

18

PRICE-S generates software cost estimates based on project scope,
program composition, processor loading and demonstrated organization
performance, and other environmental factors (27:A-1-1). PRICE-S inputs are

@ grouped into seven main cateqgories. (See Table 2-3 for model categories.)

Table 2-3. PRICE-S Input /ariables (27:A-1-9)

1. Project Magnitude (How big?)
The amount of code to be produced and the languages to be used.

|
! 2. Program Application (What Character?)

The type of project such as MIS, Command and Control, Telemetry,
l Communications, etc.
|
i

3. Levei of New Design and Code /How much new work is needed?)
The amount of design and code that cannot be taken from existing inventory.

4. Productivity (Who will do the work?)
The experience, skill, and know-how of the assigned individuals or team, as
applicable to the specified task.

5. Utilization (What hardware constrain{s?)
The extent of processor loading relative to its speed and memory capacity.

i ,h 6. User Specifications and Reliability Requirements (Where and how used?)
5 The levei of requiremunts reiating to testing, transportability and end use of
4 the product.

7. Development Environment (What coinplicating factors exist?)

The relative impact of unique project conditions on the normal tin.e required

to complete the job, measured with respect to the arganization, re:sources, program
oA application and project size.

~e._

Operational and testing requirements are incorporated, together with
technology growth and inflation, to calculate values for six cost categories in
nine developmerit phases (PRICE-S considers one "pre-software” phase plus

the eight standard development phases) (27:A-1-2). Cost categories calculated

J by PRICE-S include Design, Prograrmming, Data, Sy ~tem Engineering/Program

Management, Quality Assurance, and Configuration Management (27:A-1-2).

19

SEER-SEM. System Estimation and Evaluation of Resources - Software
Estimation Model is a commercial cost model! distributed by Galorath Associates,
Incorporated and operates in a Microsoft Windows environment. SEER-SEM is
based on a mathematica! software estimation model deveioped by Dr. Randall
W. Jensen (19:5-1). Although the original model was developed during 1979 -
1980, SEER-SEM makes use of the latest updates to its input parameters by Dr.
Jensen, statistical conclusions from eight additional years of historical data, and
the experierice of software cost estimation experts (19:5-1). According to the

SEER-SEM user manual, the model:

(1) produces estimates for software developments from System Concept
through 25 years of operational support

(2) furnishes the estimator with a wide range of inputs to ensure proper
representation of each unique sofiware development

(3) supplies basic software development estimation, des: Jn-to, and cost-
to-comnplete capabilities

(4) offers many, varied output reports to ensure the estimator has all the
information necessary to estimate, monitor and control software
development projects. (19:5-1)

SEER-SEM has four primary input categories including plaiform,
application, development method, and development standard (19:Appendix E-1).
The mode! uses these four inputs to selact a sat of default parameter inputs from
integral knowledge bases. The only other required input is an estimated range
for number ¢ © lines of code to be developed.

The user may fine-tune the model by altering the default input parameters
selected from the knowledge base. Several key SEER-SEM parameters include

complexity, personnel capabilities, development support environment, product

20

development requirements, product reusability requirements, development
environment complexity, target environment, schedule, staffing, and software
maintenance. The user must provide three values: one for the low value, one
for the most likely value, and one for the high value (19:10-1).

The model also provides eighteen different reports analyzing cost,

schedule, and input relationships and generates charts for staffing plans,

schedule risk, and effort risk (19:11-1, 11-27). Some of the key reports
generated by SEER-SEM include the Quick Estimate Report, Basic Estimate

Report, Maintenance/Qpgaration Support Report, and Inputs Report. The user
can display these various reports in one window and the input parameters in
another window. This allows the user to analyze how the cost estimate is

impacted by changes in various input parameters.

Summary
This chapter reviewed recent publications and research efforts in the field
of software cost estimation. Several factors impacting the accuracy of cost

estimates were examined, the coricept of noermalizatinn was explained, and

model descriptions were obtained. The literature was consistent in one respect: ‘

software cost modeis, in and of themselves, do not automatically generate good |

cost estimates. One model developer best summed up this sentiment by stating: ’

Estimation is not a mechanical process. Art, skill, and knowledge are
involved The model's responsibilities are to transform measures of
estimators into consistent projections for costs and schedules. The model
cannot make the initial judgments that define the product, nor can it
commit an organization to achieving goals. It does not replace
estimators. It merely helps them do their job more quickly, more
consistently, and more thoroughly. (28:61)

lll,_Methodology

Overview

This chapter discusses the methodology used for this research effort.
Research was conducted in two phases: (1) independent analysis of the cost
models and (2) validation and concurrence of analysis by cost model vendors

and model axperts.

Phase 1. Independent Analysis

The purpose of this phase was threefold. First, the researchers had to
become familiar with each software model beforc Iny meaningful analysis could
be performed. Second, after gaining familiarity with the models, the researchers
examined the underlying assumptions and equations of each model to identify
significant differences. Lastly, a baseline case study was developed and
sensitivity analyses were conducted to determine the impact of identified
differences between models.

During the first part of this phase, the researchers worked primarily on
becoming familiar with each model under review. To achieve this objective, a
review of current software cost estimating literature was conducted, previous
model analyses were reviewead, and REVIC, SASET, PRICE-S and SEER-SEM
software and user manuals were obtained. On-line tutorials for PRICE-S,
SASET, and SEER-SEN were completed by the researchers (REVIC dees not
have this capability). Lastly, focal points for each model were identified to
provide additional assistance as required. Telephone interviews were the

primary means of communication with the focal points.

22

During the second part of this phase, the researchers examined the
underlying assumptions and equations of each model to identify significant
i differences. To achieve this objective, the researchers relied heavily on the
i models' user manualis, technical reports, published articles, telephone interviews
i with model vendors, and hands-on experience with the models. To limit the risks
associated with concurrent research (e.g. two team members conduct research
on different models), a checklist was developed for examining the models. A
! brief excerpt of the checklist is provided below. See Appendix A for complete
checklist use:d by researchers. Each issue was addressed as a specific finding

in Chapter IV, Findings.

issue 1. What DoD-STD-2167A phases and activities are included in the
estimate produced by each madel?

Issue 2. What general development activities and specific cost elements
are estimated?

Issue 3. How does each model define a source line of code and how are
tanguage differences accounted for?

Issue 4. Which model factors are key cost drivers? What estimating
methodology was used to develop these factors?

Issue 5. How does the model accaunt for schedule compression and
extensions?

Issue 6. What implications does project size have on model output?

Issue 7. Are there any distinctive characteristics about the model's data
base(s)?

During the third portion of thi phase, a baseline case study was
developed and sensitivity analyses were conducted to examine the impact of

identified differences between models. The case study was based on a fictional

| 23

flight avionics system. The fictional system was programmed in Ada and
developed using the traditional waterfali software development life cycle. See
Chapter IV, Findings for additional details regarding the case study.

A fictional case study was preferred over actual program data for several
reasons. Most importantly, it was the most flexible approach and allowed us to
develop a workable case study within this research effort's time frame.
Secondly, fictionai data alleviated any potential problems with collecting and
using proprietary data. Lastly, the purpose of this effort was to examine how the
models estimate rather than to second-guess the cost estimates of previously
completed projects or to compare the model's relative accuracies.

Using the information provided in the case study, cost estimates were
generated using the nominal (default) values for all inputs in each model to
determine the base cost estimates. With the assistance of the medel
developers/vendors, the researchers then adjusted model inputs to more

accurately reflect the development environment for the fictional case.

Phase 2. Validation and Concurrence
This phase focused primarily on querying model vendors and model
experts to obtain any additionai information not found during independent

research and validating research results with vendors. Important steps included:

1) Interviewing vendors/imodel experts (o oblain necessary ii

not found in independent analysis.

Wormation

2) Validating accuracy of research results with vendors/model experts.
3) Documenting results of validations/concurrences with vendors.

4) Reevaluating and updating, if necessary, research results after
discussions with vendors.

24

This phase relied extensively on telephone and personal interviews with
model vendors and experts. Additionally, there was an inherent degree of
overlap between Phase 1 and Phase 2. Frequent conversations were necessary
with model vendors since all equations and internal logic for the models are not

published and readily available.

25

i
s
F
|t
&
1

V. Findings

[NDING #1. Software Devaelopment Phases

Software development efforts within the Air Force are guided primarily by

two standards: DoD-STD-2167A for weapon system software and DoD-STD-

7935A for management information systems. DoD-STD-7935A will not be

discussed since this effort focused specifically on software development efforts

related to new or modified weapon systems. DoD-STD-2167A establishes

uniform requirements for software development efforts which are applicable

throujhout the weapon system's life cycie (10:B-7). (See Table 4-1 for

DoD-STD-2167A phases.) Although the standard is not intended to specify or

discourage use of any particular software development methed, it outlines

several major activities and key formal reviews the software development

process should encompass.

Table 4-1. DoD-STD-2167A Phases/Activities and Key Formal
Reviews or Audits (16:B-7)

SR, LAY $ QYOI THAE VWS 4
Phase 1 | System Requirements Analysis/Design | System Requirements Review (SRR)
System Design Review (S5DR)
Phase 2 | Software Requirements Analysis Software Specification Review (SSR)
Phase 3 | Preliminary Design Prefiminary Design Review (PDR)
Phase 4 | Detailed Design Critical Design Review (CDR)
Phase 5 | Coding and CSU Testing _ None
Phase 6 | CSC Integration and Testing Test Readiness Review (TRR)
Phase 7 | CSCI Testing Functional Configuration Audit (FCA)
Physical Configuration Audit (PCA)
Phase 8 | System Integration and Testing Formal Qualification Review (FQR)

26

Given the eight software develocpment phases identified by DoD-STD-
2167A, each software cost estimating model was examined to determine which
phases were included in the estimate produced by each model and how effort
was allocated among the development phases. Additionally, the model's ability
to account for alternative approaches for implementing the seftware life cycle
was reviewed. Table 4-2 summarizes the phases encompassed by the models

and is followed by a detailed discussion of each modei.

Table 4-2. Correiation Matrix of Software Development Phases

System Rqmts Not Addressed System Concept System Concept S/W Rygmts Analysis
Analysis/Design By Model NOTE 1
System SW Rqmts System S/W Rgmts
Analysis Analysis
SMW Rqmts
S/W Rqint lysi Rgmts
/W Rgints Analysis Engineering SMW Rgmts Analysis | S/AW Rqmis Analysis

Prellminary Design

Prellminary Design

Preliminary Design

Prellminary Design

Preliminary Design

Detailed Design Critical Design Detailed Design Detailed Design Detailed Design
Code & CSU Test Code and Unit Code Coda and Test Code & CSU Test

Testing

Uni Testing

CSC Integration & CSC Informal CSC integration &
Testing Testing Test
CSCI Testing Integration & Test CSCl Formal Testing | CSCI Testing CSCl Testing
System Integration & Developiment Test System Integration & | System Test System integrate

Test

& Evaluaticn

Tesling

Operational Test &
Evaluation

Through Operational
Test & Evaiuation

Note 1: Initial research was performed with SEER-SEM, ver. 3.00. The current version (3.21) further

allocates scheduie/effoit to System Requirements Analysis and S/W Requirements Analysis.

27

REVIC. REVIC estimates costs for six development phases versus the
sight identified by DoD-STD-2167A phases. Although the model estimates effort
associated with S/W Requirements Analysis, REVIC does not accounf for
System Requirements Analysis/Design effort. REVIC also combines phases 5
and & of DoD-STD-2167A into a Code and Unit Testing phase (20:3).

REVIC's terminology for its last two phases can cause some confusion
when comparing these phases against those identified by DoD-STD-2167A.
REVIC's Integration & Test phase is actually comparable to DoD-STD-2167A's
CSClI Testing phase. The REVIC User Manual defines the Integration & Test
phase as the integration of CSCs into CSCis and the testing of the CSCls
against the test criteria developed in the program (20:3). This effort corresponds
to DoD-STD-2167A's definition of the CSCI test phase. Additionally, REVIC's
Development Test & Evaluation phase is similar to DoD-STD-2167A's System
Integration & Test. This phase includes testing the weapon system to ensure
the requirements of the system level specifications are met.

Methadology for Aiiocating Development Effort Among Phases. REVIC

initially calculates total software development effort based on user inputs for
SLOC and various environmental factors. Total development effort is then
allocated to four phases based on preset percentages. (See Table 4-3 for
REVIC's default allocation percentages.) The model then adds 12% of total
development effort for S/W Requirements and 22% for Development Test and
Evaluation (DT&E) to account for the remaining two phases. For example, if the
effort associated with Preliminary Design, Critical Design, Code & Unit Testing,
and Integration & Test equals 1000 manmonths, REVIC adds 120 manmonths
for S/W Requirements Engineering and 220 manmonths for the DT&E phase.

The final estimate will total 1340 manmenths. Users may change the

28

Vil
,

2,

Table 4-3. Default Allocation Perceniages for REVIC Developmd nt Phases

Preliminary Design ’ 23%
Crtical Design 29%
Code & Unit Testing “ 22%
—I—ntegration & Test) 26%

percentages associated with these two phasas to better matci the distribution of
effort applicable to their particular organization.

Primary and Aiternative Approzches to the Sottware Lite Cycle. REVIC is

based on the waterfall life cycle anproach The mndel does not allow the user to
specify ottier life cycle approaches such as evolutionary, prototype, or
incremental developmeni. Although REVIC has several development mode
optiors (Ada, Organic, Semi-detacted, and Embedded), these nicdes dzscribe
the lype of deveiopment project and not the software life cycle approach.

SASET. If the user selects the DoD-STD-2167A life cycle optien, SASET
estimates co. t and schedule milestones for ten pnases versus the eighi phases
idertitied by DoD-STD-2167A. SASET Liaaks Phasc 1 into two phases: &
System Concept phase ard a Syster, Softvare Requirements Analysis piiase.
SASET alsn divides Phase £ into two distinct phases: a (Code phase and a Unit
Test phase. Al other SASET phiases are egquivalent to the phases described vy
DoD-STG-2167A.

Methodology for Allocating Develupment Etfort Among Phases. Like

REWVIC, SASET first calculates total development effort and then allocates a

percentags o the efiurt to each of the ten phases. The user can change the

29

L

default aljocation percentages, however, the allocation percentages mur* add up

:‘,'-r_ . to 1.0. (See Table 4-4 for the SASET's default allocation percentages.)

Tabla 4.4. Default Allocatien Percentages for SASEY Development Phases

s | . System Consupt 7.5%
: \ System S/W Requirements Analysis 8.5%
. ; S/W Reqgairements Analysis 9.0%
. Preliminary Design 7.0%
Detailed Design 17.0%

Code 13.0%

Unit Testing 7.0%

CSC Intorrn2] Testing 9.0%

' ‘ CSCl Formal Testing . 7.0%
‘ J Systern Integration & Testing 15.0%

E it should also be noted SASET adds an integration penaity when several

CSCls must be integrated. However, the integration penalty is simply added to

the total efiort and distrivuted then among all ten phases based on the allocation

. perceritage. The user has the option of assigning higher allocation percentages

"3y o the applicable ghases to more accurately capture the additional effort involved
g with CSCl integration.

Crimary and Alternative Approaches to the Software Life Cycle. SASET is

' based on the waterfall life cycle approach. The model does not have spercific
nptions wh.ch allow the user to select alternative life cycle approaches s wh as

evolutionary, prototype, or incremental development. However, if the use; was

30

extremely proficient with adjusting SASET calibration files, alternative life cycle
approaches could be modeled (29).

PRICE-S. PRICE-S estimates cost and schedule milestones for nine
phases of software development versus the eight phases identified by DoD-
STD-2167A. PRICE-S breaks the System Requirements Analysis/Design
phase into two phases: a System Concept phase and a System Software
Requirements Analysis phase. PRICE-S also combines phases five and six of
DoD-STD-2167A into a Code and Test phase. With the exception of the
Operational Test & Evaluation phase, all other phases are equivalent to the
phases described by DoD-STD-2167A.

The Operational Test and Evaluation phase accounts for contractor
support costs related to the operationa! effectiveness and suitability of the
deployed system. According to a PRICE-S model developer, this phase should
be included if the project is a fairly simple effort (i.e. one or two contractors
involved). However, if the effort is more complex and involves several
contractors performing tests at various locations, the analyst should exclude this
phase and estimate these costs outside of the madel (30).

Methodology for Aflocating Development Effort Among Phases. PRICE-S

differs from REVIC and SASET in that no preset allocation percentages are used
to distribute effort to the various software development phases. The core of
PRICE-S consists of three major development activities: design, implementation
and testing. These activities comprise Preliminary Design, Detailed Design,
(Code and Unit Test and CSCI Test. Key costs for the three major development
activities are estimated and then a "ripple effect" submodel is used to distribute
the cnsts across the software development phases. Figure 4-1 illustrates the

ripple effect submodel used by PRICE-S.

31

COSTS IN DOLLARS/10C0 DESIGN IMPL T &i TOTAL

SYSTEMS ENGINEERING 4 (49 313) 781,
PROGRAMMING 38.
CONFIG CONTROL, Q/A *-)iv N2
DOCUMENTATION - 162,

PROGRAM MANAGEMENT "
TOTAL 1778

o

Figure 4-1, Ripple Effect for Calculating Activity Estimates (31)

The model developers viewed systems engineering during design as the
key to software deveiopment effort (28:6). As systems engineering for a project
increases, all other efforts necassary to complete the project wili also increase.
This is why the model developers call systems engineering "key" and use it as
the starting point for the ripple effect.

According to "The Central Equations of the PRICE Software Cost Model”,
programming, configuration management, a. ! quality assurance are viewed as
supporting activities during the design phase (28:41). A~ arestilt, their effort
and cost are driven by the amount of activity in systems engineering. This
relationship is illustrated in Figure 4-1 by the two arrows immediately below the
system engineering sstimate. Dacumentation is a funation of the three
preceding activities and program management is a function cf the suin of the
four elements that need to be estimated.

Programming is the central activity in the implementation phase and the
same approach used to estimate design costs is used to estirnate supporting

activities. During integration and testing, PRICE-S model developers elected to

32

X b Mmoo
e ——— .

|
-
: ‘]

R

use systems engineering as the driver and all supporting activities are calculated
from this factor (28:41). _

After these caizulations are performed, the costs are rebalanced to
account for several faclors such as high utiiization and specification levels. The
Systams Engineering cost is apportioned to Design Engineering and System
Engineering/ Program Management. Configuration/Quality Assurance is split
into two cust elements: Config ration Ma.agement and Quality Assurance
(28:47). The design activity is mapped to Preiiminary Design and Detailed
Desiyn, implementation is mapped to Code and Unit Test, and integration and
test is mapped to CSC1 Taest. Profiles are then created for each of the cost
categorizs and used to distribute the costs over the development period.

Prirnary and Allsrnative Approaches to the Software Life Cycle. PRICE-S

i5 based on the watarfall life cycle approach. The model does not have specific
options which allow the user to select zitermative life cycle approaches such as
evolutionary, jwrototype, or incremental development. However, according to
PRICE-S personnel, alternative life cycle approaches can be modeled (30). For
exampls, an incremental life cycle approach can be modeled by setting up
muliiple CSCls and adjusting global faciors to represent the project's
dsvaicpment profile. Inexperienced model users should seek assistance when
attemipting this process to ensure the desired results are achieved.

SEER-SEM. SEER-SEM estimates costs for nine software development
phases. Overall, the phases closely parallel those identified by DoD-STD-
2167A phases. Initial research was performed using SEER-SEM, version 3.00.
Although this version of SEER-SEM estimates System Requirements Analysis
effort; it is reported under the S/W Requirements Analysis phase and not

specifically allocated to earlier phases (32). The current version (SEER-SEM,

33

ver. 3.21) addresses this issue and further allocates System Requirements
Anaiysis effort to its associated phase.

Methodoloqgy for Allacating Development Effort Among Phases.

According to the mode! developer, SEER-SEM allocates a percentage of the
development schedule rather than effort to each phase (33). The aliocation
percentages are a function of the "Platform” and "Development Methods"
knowledge bases. These knowledge bases specify the "Percent of Base Full
Scale Implementation" allocated to various development phases. According to
the SEER-SEM User's Manual, Full Scale Impiementation (FSI) includes
Preliminary Design, Detailed Desigri, Code and CSU Test, CSC Integration and
Test (19:5-10).

The "Platform" and "Development Method" knowledge bases were
examined to identify the detault allocation percentages. (See Tables 4-5 and
4-5 for default allocation percentages.) Users may review and change, if
desired, the allocation percentages by adjusting the vaiues in the knowledge

basgs.

Table 4-5. Default Allocation Percentages for SEER-SEM Platform Knowledge Base

:_"s‘:"i";n 20 20 20 20 | 20 [20 | 20 20 20
?ST:SZ‘;R 43 50 43 | 43 | 43 | 43 | 43 43 43
Raee | 10 70 70 1 70 [70 | 70 | 70 70 70 .
:sﬂf::n 97 97 97 97 97 97 97 97 97
:‘S‘:::'::T 100 | 100 | 100 | 100 | 00 | 100 | 00 | 100 100

34

Table 4-6. Default Allocation Percentages for SEER-SEM Development Method
Knowledge Base

% of Base N 20 20 13 20 1 1 23 0
FSlto POR [S——
% of Base 0 45 45 | 35 | 45 | 3 3 42 0

51 to COR

% of Basa 0 75 75 95 75 97 95 95 0
FSlto CUT

% of Base 0 97 97 97 97 g8 a7 97 0
FSito TRR

% of Base 0 100 | 100 | 100 | 100 | 100 | 100 | 100 0
FSlto FQT

|
i
|
\ An empirical analysis of SEER-SEM indicates the allocation percentages
! associated with non-FSI phases (Requirements Analysis, CSClI test, énd System
l integration and Testing) are generally independent of development method.
o --1. Although the model developer states users "will see vastly different effort in
| requirement analysis depending on which knowledge bases are chosen”, our
analysis indicates the cost associated with requirements analysis was generally
5.8 percent of the total CSCl cost (33). (See Table 4-7 for an example of

allocation percentages for a ground based radar system.) The reader shouid

note these are only approximate ailocation percentages for efforts involving the
design, code, and test of 100% new code based on different development
methods.

Primary and Alternative Approaches to the Software Life Cycle. SEER-

SEM is uniqgue among the models reviewed since specific options for alternative
lite cycle approaches are available The user chooses from eight development
methods when describing the project and its CSCls. (Note: Version 3.21

addresses a ninth development method: the evolutionary life cycle approach).

Table 4-8 provides descriptions of each development method.

35

L - - = LIS ¥ LS S ML . SR B S-S S e —— S SRS S S 4 —— W) ——— o e e e e i — e e e =5 %=

§

g Table 4-7. Allocation Percentages for SEER-SEM Development Phases

s aa dasasra

padadaaianaston s TR

|

|

[

I
)' S/W Rqmits

3

|

nvalysis (Note 1) | 58% | 58% | 58% | Se% | s0% | 30% | 58% | 58%
g::ii;;inm 9.0% | 90% | 9.0% | 0% | 03% | 03% | 475% | 9.0% .
AI Detailed Desien | 46 004 | 16.5% | 16.5% | 16.5% | 0.7% | 06% | 15.3% | 15.0%
Code & CSU Test

23.5% | 26.9% | 27.0% 27.0% 745% | 736% 10.7% | 23.5%

28.1% | 23.1% | 23.2% 23.2% 1.1% 2.3% 2.1% 28.1%

| CSC Integ. & Test
! CSCI Test

3.2% 3.2% 3.2% 3.2% 2.2% 3.5% 3.2% 3.2%

System Integ.

0 49 5 4% A% 49 5.79 49 4%
Thrt OT&E 16.4% | 15.4% | 15.4% 15.4% 15.4% 16.7% 15.4% 15.4%

) Note 1 This phase includes effort associated wil. hoth System [lequirerrents Analysis and Soitware Requirements
G Analysis. Subsequently analysis of SEER-GEM, ver. 3.21 indicaies the total effort allocated to System
) Requirements Analysis and Software Requirements Analysis remains at approximately 5 8%: however, the

| effort is now allocated to each phase rather than corrbined in the SAW Requirements Analysis phase.

Table 4-8. Descriptions of SEER-SEM's Development Methods {19:9-3 and 9-4)

i Davelopment Mathod’ Deascription
i Ada Development Use of Ada as a programming fanguage
|
l
o] Ada Development with Use of Ada as a programming language foilowing the
: Inci menta! Methods incremental development process
Ada Full Use Use of Ada plrogrammmg language, Ada development tools,
and methods
None No formal developrment process used
| Prototype iterative development

Cyclical madel where a repeating set of activities are
performed on an increasingly more detailed representation of
the product

Linear model which ailows the developer to iterate among the
activities within each of the iife cycle nhase: for each of the
incrernents defined for the system

Linear model where the activities of each phase of the life
cycle must be completed befare continuing to the next phase

Spiral

Traditional Incremental

Traditional Waterfalil

SEER-SiM uses project and CSCi descriptions to select the appropriate
knowledge base and its associated input values. (See Finding #7 for more
infermation regarding SEER-SEM's knowledge bases.) Low level inputs are
modified when different development methods are specified. For example, the
"Adafuil" option has different inputs for "Modern Development Practices Use"
and "Language Type" to account for language differences and increased use of
automated software tools. Likewise, inputs for "Requirements Volatility" are
different when the "Incremental" option is selected. As a result, estimates vary

when different development methods are specified.

37

Finding #2. Development Activities and Cost Elements

When comparing the final cost estimates produced by different models, it
is important to recognize which development activities are (and are not) included
in the model's output. While no regulatory requirement for a specific cost
element format was identified, a framework of general deveiopment activities is
suggested. Using this framework as a baseline, analysts can then identily and
adjust for differences between the models.

Each model was examined to determine which general development
activities are included in estimates. Table 4-9 provides a summary of the
comparison between the baselined development activities to the activities
estimated by each model. Table 4-10 identifies the specific cost elements

estimated by each modei and is followed by model definitions for each element.

Table 4-9. General Development Activities included in Model Estimates

Rgmts Effort Note 1 Yes Yes Yes |
Design Yes Yes Yes Yes
Code Yes Yes Yes Yes
Test Activities Yes Yes Yes Yes
Quality Assurance Yes Yes Yes Yes
Configuration Mgt Yes Yes Yes Yes
Direct S/W Program Mat Yes Yes Yes Yes
Documentation Note 2 Yes Yes Yes

Note 1; System Requirements Analysis not addressed by REVIC,
Nota * Does not reflect all effort necessary to conform to DoD-STD-2167A documentation requirements.

38

Table 4-10. Specific Cost Elements/Activities Estimated by Each Model

REVIC + Requirements Analysis

» Product Design

* Programming

» Test Planning

+ Verification and Validation

« Project Office Functions

« Configuration Management and Quaility Assurance
« Manuals

SASET + Systems Engineering
« Software Engineering
« Test Engineering

» Quality Engineering

PRICE-S o Design

« Programming

« System Engineering/Project Management
e Configuration Control

o Quality
e Data
SEER-SEM = Regquirements Analysts

+ Software Design

« Software Programming

o Software Test

« Project Management

« Configuration Management
« Quality Assurance

+ Data Preparation

REVIC. REVIC distributes effort between eight major cost elements or
B | project activities. Definitions and activities associated with REVIC's cost

elements are listed in Table 4-11.

Table 4-11. REVIC Cost Elements and Definitions {1:49) '

} Regquirements Analysis. Determination, spacification, review and update of software
: functional, performance, interface, and verification requirements.

: Product Design. Determination, specification, review and update of hardware-soitware
architecture, program design, and data base design.

Programming. Detailed design, code, unit test, and integration of individual computer
program components. lnciudes programming, personnel planning, tool acquisition,
data base development, component level documentation, and intermediate levei

] programming management.

Test Planning. Specification, review and update of product test and acceptance test plans.
Acquisition of associated test drivers, test tools, and test data.

l Veerification and Validation (V&V). Performance of independent requirements validation,
design V & V, product test, and acceptance test. Acquisition of requirements and design
V & V tools.

| Project Office Functions. Project level management functions. Includes project level
| planning and control, contract and subcontract management, and custorner interface.

Configuration Management and Quality Assurance. Configuration management includes
product identification, change control, status accounting, operation of program support library,
development and monitoring of end item acceptance plan. Quality assurance includes
development and monitoring of project standards, and technical audgits of software products
and processes.

: Manuals. Developn 2nt and update of user, operatos, and maintenance manuals.

The amount of effort associated with each activity is a percentage of the

effort allocated to the following development phases. Software Requirements

Engineering, Preiiminary Design, Programming (including Critical Design and

Code & Test), and Integration & Test. For example, 46% of the effort incurred in

the Software Requirements Engineering phase is allocated to the requirements

,
|
[
1
|
»
1
1
.
1
1
1
|
1
s

analysis activity. The effort required in Development Test & Evaluation phase is
distributed among the eight activities. The effort distributed to each activity is
reported in REVIC's Activity Distribution Report and summarized in Table 4-12.
The percentage allocated by the Software Requirements Engineering phase
changes slightly for projects larger than 128,000 SLOC. Specifically, 44% of the

effort (versus 46%) is allocated to requirements analysis.

Table 4-12. Default Allocation Percentages for REVIC's Activities

Rgmts Analysis 45% 10% 3% 2%
Product Design 14% 42% 6% 4%
Programming 6% 12% 55% 40% «/ ..
Test Planning 4% 6% 6% 4% .
yenpaation & 8% 8% i 10% 25%
prolest office 12% 11% 7% 8%
CM/QA 4% 3% 7% 9%
Manuals 6% 8% 6% 8%

Project Management and Documentation Costs. REVIC includes the cost

of project management and
management costs are limited to direct project management and project office
functions. REVIC does riot estimate indirect higher management costs (1:59).
More importantly, REVIC does not estimate all data requirements
necessary to conform to DoD-STD-2167A. According to the REVIC model

developer, less than 15% of the estimate is attributed to the cost of

41

documentation (34). REVIC implicitly includes the cost of a Requirements
Analysis document, a Detailed Design document, and Test documentation in its
estimate. However, the effort required to genercte many of the documents
required by DoD-Std-2167A is not included in the estimate. As a resuit, REVIC
will tend to underestimate documentation costs for projects based on DoD-STD-
2167A. Users can refer to REVIC's CDRL section to aid in caiculating additional
effort necessary to meet DoD-STD-2167A documentation requirements.

SASET. SASET allocates effort among four engineering organizations
rather than traditional cost elements. These organizations are Systems
Engineering, Software Engineering, Test Engineering, and Quality Engineering.

The primary activities associated with each organization are listed in Table 4-13.

Table 4-13. SASET Cost Elements and Definitions (29)

Systems Engineering. Involves analysts who translate and analyze customer requirements,
develop requirements and testing parameters, and serve as a customer interface.

Software Engineering Utilizes requirement information obtained from Systems Engineering
and derives requirements, applies requirements to S/W design and architecture, and
implements design (coding).

Test Engineering. Responsible for developing the test plan and test precedures, executing
tests, and reporting results.

Quality Engineering. Oversees product development and ensures the development plan is
carried out and properly executed. Verifies requirements are accomplished, customer
expectations are satisfied, and the product is produced in accordance with company
practices.

SASET allocates 14% of the total effort to systems engineering, 66% of .
the total effort to software engineering, 15% to test engineering, and 5% to

quality engineering; however, these percentages can be changed by the user.

SASET then further allocates organizationat effort in each phase of the software

life cycle. For example, based on SASET's default calibration settings, 9.6% of
the effort required ior the code phase is alioczied to Systems Engineering,
72.9% to Software Engineering, 12% to Test Sngineering, and 5.5% to Quaiity
Engineering. !lsers car reser to SASET's "Summary of Software Devalopment
Effort by Organizction & Phase Report” to determinie how the effort is allocated
arnong the varicus development phases.

Progran rdanagenient and Documentation Gosts. SASET calculetes

direct sortware program managament costs and documentztion costs; how.ver,
neither are specitically hroken out. SASET dues not spacificaliy breck out
documemation costs for softwure development nrojects. According tc Martin
harietta personnel, the model dows accaunt for documentation costs anc that
approximataly 22% of the totat development effort is ztiribut=d o documentation
efrort and is distributed throughout the project's life cycle (29).

PRICE-S. PRICE-S esdmates six major cost elements for software
dovelopment efforts. The cost elernents include design, crugramming, systems
engineering/project managen.ent, configuiation management, gquality, and data.
Dafinitions for PRICZ-S cost elements and definitions cre listed in Table 4-14.

Prcagram Manageriient and Documentation Costs. PRICE-S specifically

accounts for all cnsts associated with software decumentation and direct
software program management. Documentation costs are accounted and
reported within the DATA cost element. Although program management is not
specifically broken out, it is accounted and reported within the "System
EngineeringlProjéct Management" cost element. This cost element includes the

cost of System Engineering activities as weli as Project Me i1gement.

43

D

Table 4-14. PRICE-S Co: t Elements and Definitions (27:A-10 and A-11)

Design. The design cost element contains all costs attributed to the software engineering
design department. These costs include engineering supervision, technical ansd
administrative support and vendor liaison required for the software development effort.

Programming. The programming cast eleiment contains all costs attributed to writing the
sources code and subseguently testing it.

System Engineering/Froject Management. This element includes the System Engineering to
define the software .ystem, and the Project Management effoit required to manage the
software development project. The system engineering activily encompasses the effort to
define the system requirements, and the integrated planning and control of the technicai
program efforts of th:: aesign engineering, specialty engineering, development of test
piocedures, and system oriented testing and problem resolution. Project Management efforts
include managing the software development program in accordance with all procedures
identified in the Software Deveiopment Plan, design review activities, and administrative
duties.

Configuration Control. This activity involves the determination, at all times of precisely what
is, and is not, an approved part cf the system. To accomplish this, it is necessary to perform
three tasks. The first involves incorporating requirements and specifications into the
Functional and Allocated Baselines. Once a document has been incorporated into the
baseline, changes may only be made through the configuration control task. This task
involves the evaluation of changes and corrections to the baseline. Finally, it is necessary to
provide for the dissemination and contrci of approved baseline material. Configuration
Control also review the test procedures and ensure compliance with test plans and
specifications.

Quality. This cost element includes the effort required to conduct internal reviews and walk-
throughs to evaluate the quality of the software and associated documentation. Activities
included in this element are evaluation of the Saoftware Development Plan, software
development library maintenance, and tive Soitware Configuration Management Plan.

Data. This cost element contains all costs associated with sofiware deliverable
documentation. For military platforms, this includes responding to the "Contractor Data
Requiraments List" (CDRL} which contains requirements for delivery of all requirements,
design, maintenance, and user manuals (i.e. Systems Segment Specification, Top Level
Design and Detailed Design Specifications, Programmer and User Manuals, etc.).

According to a recert internal PRICE-S report, a gerieral rule is that sixty
percént of the total System Engineering/ Project Management costs are for
Project Management and the remaining forty perceni of costs are attributed to
Systems Engineering (35). See Figure 4-2 for an example of a PRICE-S report

and associated cost elements.

44

Acquisition. ode

DATE Sun 6-20/93 TIHE 12/47 PX Projsct : sample
392148

Engine Control Devt. Item v/comps

Costs in Person Months

Design Pgming Data S/PM QA Config TOTAL B
Sys Concept 2.0 o.0 6.3 0.9 0.1 .1 3.8
Sys/SW Reqt 2.5 0.0 0.4 1.2 0.1 0.1 4.4
SV Requirenment 5.0 0.0 0.6 5.4 0.5 0.5 12.0
Prelim De=ign 8.1 1.9 0.7 4.6 0.7 0.7 16.86
Dmtail Design 12.1 2.8 1.1 6.9 1.0 1.0 24.9
Code-Test 6.1 19.5 1.0 3.3 2.6 2.6 35.1
CSCI Test 8.3 5.5 1.0 3.8 2.1 2.1 22.5
Systen Test 1.6 2.0 0.3 1.0 1.1 2.1 8.2
Oper TE 1.0 0.6 0.4 0.6 07 0.7 3.9
TOTAL 46.8 32 .4 5.9 27 4 6.8 9.8 131.2

Figure 4-2, Example of PRICE-S Report with Cost Elements

SEER-SEM. SEER-SEM estimates eight major labor categaries for
software development efforts. Definitions and activities associated with each
category are listed in Table 4-15.

Program Management and Documentation Costs. Although SEER-SEM,

version 3.0 accounts for direct software program rmanagement and
documentation costs, the specific costs allocated to each of these elements
cannot be determined. However, newer versions (SEER-SEM, version 3.21)
explicitly break out total effort among the various labor categories. See Figure
4-3 far an example of a SEER-SEM report and associated labor categaries.
According to SEER Technologies personnel, all documentation costs are
not captured by the Data Preparation category (36). For example, effort
associated developing user manuals is associated with both the Data
Preparation and Software Design categories. As a result, users should not

report total documentation costs based solely on the Data Preparation category.

45

Table 4-15. SEER-SEM Cost Elements and Definitions (19:5-11 and 5-12, 36)

Requirements Analysts. Responsible for developing S/W requirements and specifications.

Configuration Management, CSCI configuration identification, change control, configuration

status accounting, and configuration auditing to ensure proper configuration control.

Program Management. Direct labor management. It does not include hardware
management, highest level program management, etc.

Quality Assurance. Includes the quality engineering functions (ensures quality is built into the
product and developing appropriate standards), and quality control inspection and audits.

Software Design. The definition of the software architecture to impiement the software
requirements, preparation of architectural design specifications, design reviews, layout of
physical data structures, interfaces, and other design details to implement the requirements.

Software Programming. The actual coding, unit testing, maintaining appropriate unit

documentation, and test driver development for the individual software modules/CSUs.

Software Test. Preparing test plans and procedures, running tests, and preparing test reports.
This includes software-related tesis only.

Data Preparation. Effort to prepare specifications, standard enyineering draft manuals (only

includes engineering effort) and other engineering paper products.

oUK CH

ystem Concept @.00 §.e8 8.00 6. 00
System Requirements Design 2.55 P.77 2.97 1.27
/W Requirements Analysis 7.4 28.67 ®.73 3.74
Preliminary besign 14.15 12.808 52.73 15.43
petailed Design 23.73 21.57 e . ki 25.89
ode & CSU Test 23 .0M 190.13 2e.27 185.77
S5C Integrate & Test d2.26 8.07 16.13 7.27
SC1 Test 3.71 a.93 1.85 18.00
System Integrate Thru OTBRE 17 .65 N.B1 9.83 83.85
intenance / Op Suppovrt 9.38 a.08 o.08 e.aa
TOTAL 125 .17 096.582 '199.95 191.30
tictivity Dats Prep Test CH QA

ystem Concept a.90 a.08 a.00 0.00
ystem Requirements Design 1.27 2.5% a.u" 0.42
/W Requirements fnalysis .74 7.%8 1.2% 1.2%
Preliminary Design 10.29 .. 2.57 2.57
Detailed Design 17 .26 30.20 %.31 4.31
ode & CSU Test 20.27 58.66 13.51 13.%1
SC Integrate & Test 32.26 116 .9% 20.16 20.16
SCI Test 3.7% 13 . &S 2.92 2.32
System Integrate (hru OUT&E 2.21 Rs 26 11.03 4. 41
Maintenance / 0o Support 0.00 0.00 0.900 0.00
NTal 21.08 327 .55 55 .58 LB _94

Figure 4-3. Example of SEER-SEM, ver. 3.21 Report with l.abor Categcries

FINDING #3. Source Lines of Code and Language Differences

Lines of code is a commonly used metric for measuring the size of
scftware development efforts. Yet, there are many different techniques for
counting lines of code such as delivered source instructions, executable
statements, terminal semi-colons, etc. Due to the numerous conventions for
counting lines of code, it is important that analysts understand how specific
models define a line of code. For example, if a model defines a line of code as
all executable statements and comments, then the model user should ensure
inputs for project size inciude comments as well as all executable statements.

Users should alsc be aware of how different programming languages
impact development effort. For example, it may take five lines of code in one
language to perform the same operation that requires 10 lines cf code in another
language. Figure 44 illustrates a sample program operation written in Ada and
the same operation written in Assembly. The sample program operation
computes: if "x" is less than four, then "y" becoimes equal to seven; otherwise,

"y" becomes equal to "x" plus five.

Ada : if X < 4 theny :=7; else y ;= x+5; endif:

Assembly: MOV x, Ax
CMP Ax, 4
Ji iabei
INC Ax, 5
MOV Ax, y
JMP end
fabel MOV 7, y
end

Figure 4-4. Sample Ada and Assembly Program Operation (12)

In this example, it takes eight lines of Assembly code to execute the same
operation as one line of Ada. However, this does not necessarily mean it takes
eight times as much effort to deveiop a program in Assembly than Ada since
total development effort is a function of many other environmental factors.
REVIC. REVIC, a COCOMO variant, refers to lines of code as source

instructions. COCOMO's developer defined source instructions as:

All program instructions created by preject personnel and processed into
machine code by some combination of pre-processors, compilers, and
assemblers. It excludes comment cards and unmodified utility software.

It includes job control language, forrnat statements, and data declarations.
Instructions are defined as code or card images. Thus, a line containing
two or more source statements counts as one instruction; & five-line data
declaration counts as five instructions. (1:59)

When the effort involves adapted (or modified) code, REVIC adjusts
SLOC using Equation 1.

Equation (1): EDSI = ADSI *[“DM +0.3CM +0.31M J

100
where:
EDSI = Equivalent Delivered Source Instructions
ADSI = Adapted Delivered Source Instructions
DM = Design Modification
CM = Code Madification
M = Retesting

In Equation 1, ADSI is muitiplied by the percent of design modification, code
modification, and retesting. For example, an adapted code package which had .
exactly 100% design modification, 100% code madification, and 100% retest

would result with an EDSI equal to the ADSI {20:14).

48

_— e ——— A

i
]
|

Model's Ability to Account for Different Lanquages. REVIC does not

differentiate between languages. The model caiculates the same effort for
10,000 lines of Assembly as for 10,000 lines of FORTRAN. The only exception
is if the Ada development mode is selected. Estimates based on the Ada
development mode generally result in less effort than the embedded and semi-
detached development modes, but more effort than the organic development
mode. (See Finding #5 for REVIC's equations for different development modes.)

SASET. SASET defines S1.CC as:

All executabie statements, plus inputs/cutputs, format statements, data
declaration statemenits, deliverable job control language staiements, and
procedure-oriented language statements. SLOC does not include
statement continuations, database contents, "continue” statements, or
program comments. (12) :

Users may speacify the amount of new, modified, and rehosted code associated
with the development effort. New code is software code that will be developed
from scratch. Modified code is software code which has some development
already complete and can be used in the software program under consideration.
Rehosted code is completed and tested software code which will be transferred
from one computer system to the new system under development.

Once inputs for the SLOC values are made, SASET computes an
adjusted sizing value called "New HOL Equivalent Source Lines of Code". To

.y

~
U0 Ol

P Y W T 3 W oY sl & el a4
aerive tis vaiue, oAok 1

s £ sl _ R bV + S | P 3
0 O1 e mMoQiried coae dand

()
NG

the rehosted code is equivalent to the effort required to generate a new LOC.
These percentages can be changed by rnodifying the SASET TIERS.CAL
calibration file. For example, 1000 lines of modified code is equivalent to the
effort required to generate 730 lines of new code. SASET also assumes every

iree lines of Assembly code is equivalent to one line of HOL code.

Table 4-16 provides an example of how SASET caiculates the New HOL
Equivalent SLOC.

Table 4-16. Sample SASET Calculations for New HOL Equivalent SLOC

New HOL Equivalents:

1000 730 100 333 243 33 2439

Caiculations:

New HOL. = (1000 x1.00) = 1000 lines of New HOL
Modified HOL = (1000 x0.73) = 730 lines of New HOL
Rehost HOL = (1000 x 0.10) = 100 lines of New HOL
New ASSY = (1000/3) = 333 lines of New HOL
Mod ASSY = (1000/3)x0.73 = 243 lines of New HOL
Rehaost ASSY = (1000/3)x 0.10 = 33 lines of New HOL

Model's Ability to Account for Different Lanquages. SASET allows the

user to select from two categories of language types: high-order languages
(HOLs) and Assembly language. The model does not differentiate between
HOLs. For example, SASET considers a lirne of Ada equivalent to a line of CMS,
FORTRAN, or any other commonly recognized HOL. The user may also specify
the amount of new, modified, and rehosted code in HOL and/or Assembly
language.

PRICE-S. According to the PRICE-S Reference Manual, source lines of

code are defined as:

The total number of s urce lines of code to be developed and/or
purchased. Comments embedded in the code are not to be counted.
However, type daclarations and data statements should be included and
will be breken out separately via the FRAC input. (27:37)

50

et veov TR A 000 0 A AB i e BN 53e MOOEESTT AONCWEE AESHING0 AR LML B
AN A PO Wy SR B 5 0 oy g

O 40 W Y N4 PSPPI W0t 1S TSP PP T E 4 LSS LOLIEY VM ey AL (VY 3 .4 Y S| AL e B4,

PRICE-S allows the user to specify the percentage of new design and new code.
Application-weighted averages for new design and new code are used since
some parts of a software system are more difficult to design and implement than

others (27:D-1-35). This effect is illustrated by this example:

If one were to estimate the costs for a system in which 50% of the code is
to be reused, reasoning might lead to the conclusion that the effort
required wotild be about half that for 100% new code. This reasoning
would fail te recognize that it is invariably the inexpensive code (utilities,
math, etc.) that is avaiiable for reuse, and that the difficult, machine
dependent, prablem-specific code has yet to be constructed. (27:D-1-35)

PRICE-S modifies the user input for SLOC using a composite application
value (APPL). Equations 2 through 4 on the following page are used to compute
the application-weighted factors and modified SLOC. Furthermore, the model
assumes off-the-shelf code is not free since program:ners must become familiar
with the code, the final test and integration of subsystems will involve all new or
modified software, and all delivered software must be documented (27.A-1-12).

Modet's Ability to Account for Different Lanquages. PRICE-S allows the

user to select from 20 different programming languages. If a specific
development language is not listed, the user may choose from four generic
groupings. Table 4-17 lists language selections within PRICE-S.

SEER-SEM. SEER-SEM defines SLOC as ali executabie source lines of
cede such as control, mathematical, conditional, deliverable Job Contral
Language (JCL) statements, data declaration statements, DATA TYPING and
EQUIVALENCE statements, and INPUT/OUTPUT format statements. Source
lines of code exclude comment statements, blank lines, BEGIN statements from
Begin/End pairs, non-delivered Programmer Debug statements, continuation of

format statements, machine/library generated data statements (19:10-2).

51

; Equation (2): NEWC > (MY, x APPL «CODE,)
‘ quation (2): == Thpr

> (MIX » APPL * DESIGN,)
APPL

Equation (3): NEWD =

Equation (4). SLOCM = SLOC* APPL

where;
APPL = APPL = Z, MIX, « APPL
MIX; = Fraction of total SLOC devoted to performing functions in
! application category;
] APPL; = Appiication value for functional application category
! CODE; = Fraction of code of application category; representing new work
| DESIGN; = Fraction of design of application category; representing new
: work
! SLOCM = Madified Source Lines of Code ,
!
| Table 4-17. Language Selections within PRICE-S (27:C-3})
i 1| Ada 9 [coBOL 17_| PASCAL
' 2 | ALGOL 10 | COMPASS 18 | PL1
i 3 [APL 11_| CORAL66 ' 19 | PRIDE
| 4 | ASSEMPLY 12 | FLOD 20 | SPL1
{ 5 | ATLAS 13 [FORTRAN 21 | HIGHER ORDER
? 6 | BASIC 14 | IFAM 22 | MACHINE
o 7 _|1C 15 [JOVIAL 23 | 4th GENERATICN
_ | 8 |CMS 6 | MICROCODE 24 | INTERPRETIVE

| SEER-SEM allows the user to allocate SI.OC between three categories:

N new liines of code, pre-existing {not designed for reuse) codse, and pre-existing

l (designed for reuse) cede. Using these inputs, the model caiculates an

! "Effective Size" which allows comparison of development alternatives when
some alternatives include reusable code and others do not (19:1-1).

New lines of code are those lines that will completely designed,

implemented, and tested. Pre-existing (not designed for reuss) code involves

lines that vvere not originally designec for reuse but will be used during this
effort, whereas pre-existing (designed for reuse) code was specifically designed
to ensure reusability. The user further allocates SLOC among six sub-
categories: pre-existing lines of code, lines to be deleted in pre-existing code,

. iines to be changed in pre-existing code, percent to be redesigned, percent to be
reimplemented, and percent to be retested.

Modei's Ability to Account for Different Lanquages. SEER-SEM allows the

user to select from a variety of programming languages. Table 4-18 lists the
choices availabie for the Language Type (complexity) parameter. The model
also accounts for differences associated with the Ada language with its

Development Method knowledge base (AdaDev, AdaFull, and Adainc).

1 Table 4-18. Language Salections within SEER-SEM (19:10-20 and 10-21)
|

Description
: Fuli Ada, Pl/l Version F
o High JOVIAL, CMS-2, Mainframe Assemblers
| Nominat Pascal, FORTRARN, COBOL, C, PL/1 Subset G, PC Basic,
Micro Assemblers, Ada without Tasking
; Low Basic, Many 4GLs

Note: The user may select in between these setting with the PLUS and MINUS ratings. For
example, naminal + is higher than nominal; nominal - is iower than nominal.

Finding #4. Key Model Attributes and Key Cost Drivers

Aithough different software cost models calculate total development effort
in different ways, the model developers appear to agree in one respect. Project
costs cannot generally be estimated solely cn the basis of the number of source
lines of code. A variety of factors such as programmer capabilities, modern
development practices, requirements volatility, and reusability requirements
influence the deveiopment effort.

Recognizing the need to account for these factors, the modeis allow users
to describe the developmeni environment by medifying various development
attributes (or inputs). For example, if the user knows the development team has
extensive programming experience for the proposed project, he or she may
adjust a model input to reflect these circumstances. If no additional information
is available, the user should select the nominal value.

This section reviewed model inputs and four broad categories were
identified: personnel capabilities, development environment, target environment,
and project requirements. Many of the key model inputs were categorized in
Table 4-19; however, this table does not atternpt to categorize all inputs nor
does it illustrate equivalent model inputs. It is provided to show a sampling of
available model inputs for the previously identified categories. Additionally, the
reader should not assume the ﬁmodel nputs are equivalent simply because they

are lined up across from one another.
The impact of various model inputs on total development effort was also
examined. The results of this analysis were provided in thie form of graphs and

figures, where possible, to illustrate the subtie (and not so subtle) impact on

model estimates.

Table 4-19. Categorizaticn of Key Model Attributes

7 .
A
. X

|
! Personnei
l Capabilities | ACAP Development Team CPLX1 Analyst Capability
v o PCAP S/W Experience PROFAC Analyst Application Exp
. AEXP H/W Experience Programmer Capability
L VEXP integration Exp Programmer Lang Exp
LEXP Personnel Resources Target System Exp
!
; Development
: Environment | MODP Dev Locations CPLX1 Modern Dev Practices Use
I TURN Workstation Types CPLX2 Resource Dedication
| VIRT Programming Lang CPLXM Multiple Site Development
_ TOOL S/W Dev Tools PROFAC Automated Too! Use
} SECU Dev Facilities LANG Language Type
Travel Requirements | SSR Date Terminal Response Time
Target
| Environment | TiME % of Memory Utilized | UTIL Memory Constraints
STOR % of Microcode APPL Time Constraints
RELY Timing & Criticality NEWC Secunty Rqmts
i DATA Man Interaction NEWD Target System Volatility
CPLX Hardware Constraints | PLTFM Target System Experience
RUSE Software Interfaces MiX Real Time Code
Project
Rgmts RVOL System Rqmts PROFAC Rgmts Volatility
S/W Rgmts CPLX1 Specification Level

Note: This table does not attempt to illustrate equivalent model Inputs. It is provided to show a sampling of
avaliable r.iodel Inputs for four main developiment categories.

REVIC. REVIC initially calculates development effart as a function of
vl SLOC and the development mode. After adding additional effort for the software
! requirements analy'sis phase and development test and evaluation phase,

REVIC multiples total effort by an environmental modifier which consists of 18

model inputs.

i The environmental maodifier is the product of the values for each modei

| attribute. As a result, REVIC's environmental modifier can have a significant

! impact on the final estimate. In a worst case scenario where input parameters
are set to the most difficult setting, the environmental maodifier will equai

| 450.703. In a best case scenario, the environmental modifier will equal 0.055.

; Thus, if the nominal effort for a project is 500 manmonths, the effort could range

| from 27.5 manmonths (best case scenario) to 225,351.5 manmonths

. Due to the sensitive nature of certain REVIC inputs, Figures 4-5 through

4-8 are provided to show the range and impact of various REVIC inputs. The

impact of schadule compression and extensions are not addressed in this

section. (See Finding #6 for details regarding this issue.)

I
m R
‘ p1.2 —0-— ACAP
| s
j ¢ 1.1 —e— pCAP
t
1 —+—— AEXFP
F
{ . 0.9 ———— VEXP
' [+]
. 1038 0" LEXP
| ro.7
0.8 +
0.5 -t % — } -+ i
’ Very Low Low Nominal High Very High XHigh XX

Figure 4-5. Impact of REVIC Inputs for Personnel Capabilities and Experience

0.5

ol MODP

—o— TURM

—®— VIRT

—O0— TOO0L

§ 1 Il] 1
i T T L T

Very Low Low Nominai High Very High XHigh XX

Figure 4-6. Impact of REVIC Inputs for Development Environment

~0 89 3 —

0.9

0.8

~0~O0M8T™

0.7
0.6
0.5

— TIME

—®—— STOR

—Xx— RELY

~—6—= CPLX

1 1 i

i 4
" t T T 1

Very Low Low Nominal High Very High XHigh XX

Figure 4-7. impact of REVIC inputs for Target Environment

57

1. / — - _
1.1 . R —a—— RVOL

3
a
°0.9
t

r

0.6

0.5 t t -+ t 4 -4

Very Low Low Nominal High Vary High XHigh XX

Figure 4-8. Impact of REVIC inputs for Project Requirements

SASET. Development effort is a function of the lines of new equivalant
HOL code, software type, and software class. The values for software type and
class of software were developed by regression analysis on Martin Marietta's
database of 501 projects (29). Tables 4-20 and 4-21 list the default values for
various scftware types and ciasses.

The following example is pravided to illustrate how the core of SASET's
estimate is calculated. A manned, fligh: application pregram with 50,000 lines of
equivalent HOL code would required 285,000 development hours (50,000 lines *
3.0 manhours/line * 1.9 manhours/line). This value represents the core of
SASET's estimate; however, the model considers other envirorimentai factors.
According to Martin Marietta personnel, these factors should not be considered

primary drivers, but they can influence the estimate (29). Consequently, users

3o

should understand how they impact the estimate.

58

Table 4-20, Defauit Vaiues for SASET Software Types

. Systems 3.30

X Applications 1.90
Support (Note 1) 0.85
Data Statements (Note 2) 0.075

Note 1: The SASET 3.0 Technicai Reference Manual (Beta Version) iecorded tha support value as 1.1.
However, SASET'S calibration file has a value of 0.85. According to Martin Marietta personnel,
0.85 is the comrect value (29).

‘ Note 2: The SASET 3.0 Techrical Reference Manual inaccurately states Data Statements are muttiplied

by Software Class value. The Data Statements value (.075) is actually multiplied by the
! corresponding Data Factors in the calibration file.

Table 4-21. Defauit Values for SASET Software Classes

’I Manned Flight 3.00

4 Unmanned Flight 2.30

’ "i Avionics 1.80
} Shipboard/Submarine 1.35

g Ground 1.00
Commercial 0.70

K 'ﬂ The core estimaie may be impactad by the Average Software Budget
D ,: Muitiplier (ASBM: "he A\SBM is the average of the Software Budget Mulitiplier
l; (EBM) and Software System Budget Multiplier (SSBM). The SBM is calculated

from the Tier 1 inputs addressing the system environment. The user may notice

that software class is a Tier 1 input; however, it is not included in the SBM

calct ‘ation. The SSBM is calculated frum the Tier 3 inputs addressing the
attributes of the system and each CSCI has its own Tier 3 section. As a result,
CSCls from the same project may have the same SBM values but different
SSBM values.

The ASBM is analogous to the environmental factors in REVIC but is less
sensitive and has less impaét or the estimate. The values for the Tier 1 and Tier
3 inputs were deveioped by expert judgment (29). The impact of schedule and
integration penalties are not addressed in this section. See Findings 5 and 6 for
additional information regarding these issues.

Finally, it should be mentioned that the values for all factors can be
changed by modifying SASET's calibration file. However, since these values
were developed utilizing regression and expert judgment techniques, users
should not adjust these values unless they are confident a more reliable
estimate will result.

PRICE-S. Other than lines of code, the key cost drivers for PRICE-S
estimates include application (APPL), new design (NEWD), new code (NEWC),
praductivity factor (PROFAC), platform (PLTFM), and compiexity (CPLX1).
Figures 4-9 through 4-14 are provided to illustrate the impact of these factors on
development cost.

At first glance, it does not appear PRICE-S offers as many input options
as the other models. This is not tt - case since many of the key cost drivers are
composite descriptors. For example, CPLX1 is a composite of personnel
experience, automated tool use, product familiarity, and complicating factors.
Likewise, the user selects the PROFAC based on the project's source language,

application, and platform.

60

\
\
.Y 10+

i 8-

o
A

AELATIVE COST
>
1

APPL

Figure 4-9. Effect of Application on Cost for PRICE-S {27:D-1-55)

AELATIVE COST

NEWD

Figure 4-10. Effect of Mew Design on Cost for PRICE-S (27:D-1-57)

! 61

NEWC

i 104
i
.'I
. 9
e
o e 8
. K Q
v Q
R w
» A Z
’ z o
S i
P]
. |
oo
: |
kit |
x 54
o T
i Q- T T T T !
.“‘i 0 .2 .‘ 5 ,8 ‘
|
}
l

Figure 4-11. Effect of New Code on Cost for PRICE-S (27:D-1-58)

|
|
i
“'i 1
N ']
;:’.".:') I
:-"@
N RELATIVE
fod cost 7
- \
|
: i §
L \\
1 T T T T T |
; H 1 ‘ 5 § 1 ' ‘
{ aeAC
| Figure 4-12. Effect of Prouuctivity Factor on Cast for PRICE-S (27:D-1-54)
? 62

/Z‘,,..;

6§

4

RELATIVE CGST

| iy
| oAl Tl
!
.

- Figure 4-13. Effect of Piatform on Cost for PRICE.S {27:D-1-56)

104
/
g-
1 8+
: .
§ 1]
. 5
{ F
] .‘1 64
| 5
|
|
] A
|
1
. ’ °z'\/ T Y 1 1
! . 0 g 13 14 21
A oL
" Figure 4-14. Effect of Complexity on Cost tor PRICE-S (27:D-1-59)
| €3

nxv
DR TLAR SR A U WA TR IS BT 6T L Il VL THEAVI A FNDT £ § TS A B -,

P UV ITRR I U gL

by G SEER-SEM. SEER-SEM uses environmental factors to incorporate the
lf' _) influence of the development environment on effort and schedule (19:D-1).
Although the model provides default input values based on the knowledge base
chosen, SEER-SEM allows the user to adjust approximately 50 factors to more
accurately reflect the deveiopment project (assuming additional information is
available).

According to the SEER-SEM user's manual, the effect of these factors on
development effort is a function of the range of values the factor ¢an take
(19:D-1). Figures 4-15 through 4-19 are provided to illustrate the impact of

many key environrnental factors.

ey

] Tewd Lavel

- T Lanvguage [Ezoan wonTypes
1 LOQan Ty IHeiduony Tufuin:. nd
oK’ Loved
3 Pﬁ_ﬂﬁ.‘.ﬂl l:t-uwdl Volgsay
rL— J_.J n wnd m}mw
= 1 M Ceviiop [Use
3 Maemiry C
| : et
| ST Mraioee & Mt
= — —] My Volamiy
[=1 Tima Connrus
2 Frag L
G z | Frenet Koul "sqm;..:.-.;'.;*f;iﬁ;;u
P ; iy Secnty Seguremn ity unzront =
Tow 0% 10% 20% 30% 40% £0% 0% 70% 80% 90% 100% 110% 120% 400%
.
i Figure 4-15. Technology and Environme.. it Impacts for SEER.SEM

(37:Appundix A)

INAR 1][13 157 Bibates et A0 08 o | ot
4 11 AL T oA e e 1 X

w30 P ML LA L8 e AL e ot

P xe ——lyee . Anaivet Copibilities
S 120 o ™
< x
t
1.10 Omemsss .« P Canebiiives
: D ® e] - Langiags [xperionse
/ < 100 —t e Vvt Mestr Eapenenes
t
o 0.80 Low="" ’ mh\ N
A l,':! r —
; .50 ary Law e g
y \
l 0.7¢ Sme=o==0.71
o Figure 4-16. Impact of SEER-SEM Inputs for Personnel Capabilities and
o Experience (37:Appendix A)
i
.l')
1
4
2l 1
i
o
1.40 —
1.30 a2
! ;
m 1.20 NN -~ 120
. ﬂ/ﬂ"“/»‘—'*-* —1b__ s N
* 1.0 o o
ft: o—r— -w‘fuh Ues
1.00 + $ e e t smany | X T ¢ Time
,_: . 0= < Resouren Daditstien
| c 990 BW~ ~—Rom @m&' e s . Muttigie Site Develepment
t —
\ ° 0.80 e L T
Pk
L 0.70 {——

|'=‘ : Figure 4-17. Impact of SEER-SEM Inputs for Development Environment
(37:Appendix A)

65

1.70

| 1.80 /s.“

. 3 / —X-— . Specisi Displays
c

! ¢ 140 21.40 —o - Memory Conutraints

' / /)

| F 130 "2 —da— .Tune ConsTraims

; / 44/’ - Reai Time Code

|
|
‘ Very High Extra High
!
[

Figure 4-18. Impact of SEER-SEM Inputs for Target Environment (37:Appendix A)

2.00

/1 a4
1.80

:: A/:;/ /01.4[— ‘-w e Velavey

~ 080D 3~
x

F
»)
€ y.20) estion
t
o
' r g d
D e T
| Low Nom High
| 0.80
I Very Low Very High Extra High

Figure 4-19. Impact of SEER-SEM Inputs for Project Requirements (37:Appendix A)

66

i b arh AL i T R R i ot 1k ks . . A b . i i W -

Finding #5. Implications of Project Size on Model Output

O Software development effort is a function of project size as well as

‘ numerous envircnmental factors such as project complexity, target computer
system, and development staff capabilities. Since project size tends to have a
significant impact on a project's cost, model users should understand the
functional relationships between project size and development effort. For
example, does the model assume effort increases at an increasing or decreasing
rate as CSCI size increases?

To preclude inappropriate use of a model, users should also be aware of
its basic limitations. Does the mode! estimate at the project, CSCI, or CSC
level? Is the model limited by the number of CSCls? Additionally, what is the
recommended estimating range for the model? (The recommended estimating
range for each model was obtained from model developers/vendors). For
instance, if the recommended estimating range for a model is frorn 5,000 to
100,000 SLOC at the CSCl ievel, the user should be cautious of estimates
based on 130,000 SLOC CSCls.

Each model was examined to identify the functional relationship between
project size and development effort and the impact of breaking large CSCls into
multiple smaller CSCls. Additionally, each model's coverage reqarding CSCls,
CSCs, and CSUs was researched and recommended estimating ranges were

verified. Tabie 4-22 summarizes the results of this review.

s

67

e TR

[SN .

sk

Table 4-22. Correlation Matrix of Project Size Relationships

BEER

Functional Depends on Incraases at Increases at a Increases at a
Relaticnship Between | Development Linear Rate Decreasing Rate | Increasing Rate
Siza and Effort Mode

lmpact of Breaking No impact Effort Increases | Effort Decreases | Effort Decrease
Projact into Multiple Note 1 Note 1
CHlls

Integration Costs for

Mult%pie CSCl Frojects No Yes Yos ves
Estimating Levels Note 2 CSCls & CSCs | CSCIs & CSCs CSCls, CSCs, &
Addressed by Model CSUs
Recemmended 500 to 130,000 500 to 120,000 | 5000 to 200,000 | 2000 to 200,000
Estimating Range SLOC per data fils | SLOC per CSCI | SLOC Note 3 SLOC per CSCI

Note 1: Effort for individual CSCls decreases; however, tolal effort may increase or de<rease due to integration costs.

Note 2: Depends on yser definiton. REVIC estimates modules and does not ditferentiate between CSCls, CSCs, or CSUs.

Note 3; Assuriies ne model callbration. Range will change if model is calibrated to past efforts by the user's organization.

REVIC. REVIC assumes effort increases at a slightly increasing rate as

size increases for the organic, semi-detached, and embedded development

modss. However, effort increases at a slightly decreasing rate with respect to

size for the Ada development mede. These effects are explained by the

exponents associated with the equations used to estimate effort. The coefficient

and exponent used in each effort equation is dependent on the development

mcde. REVIC's effort equations are identified in Table 4-23.

Table 4-23. Effort Equations Used by REVIC {20:Sec Iil, 5)

Ada

Effort = 6.8000%(KDSI)**

Organic

Effort = 3.4644* (KDSI)'*

Semi-detached

Effort = 3.9700* (KDSI)'?

Embedded

Effort = 3.3120* (KDSI)'®

The exponents associated with the organic, semi-detached, and
o embedded development modes are greater than 1.0 which ir.iplies an
"increasing at an increasing rate" relationship; whereas, the exponent
associated with the Ada development mode is less than 1.0 which implies an
| . "increasing at a decreasing rate” relationship. Figure 4-20 graphically depicts

the relationship between size and effort for each development mode based on

REVIC's default settings.
1200 -
e
1000 7 w=—= == ORGANIC /
1 = - oo SEMI-DETACHED ///
! £ 800 ¢ — L
] —_— e . — L
g EMBEDDED P
| Z 600 — P
1 . T -
: 5 400 T -
P w I —
200 - -
0 —+ + 4
10 30 50 70 90
5LOC (000s)

Figure 4-20. Functional Relationship Between Size and Effort for REVIC

Impact of Breaking a Single Large CSCl into Smaller Multiple CSCls.

REVIC does not differentiate between CSCls, CSCs, and CSUs. The user
inputs size into modules and determines whether a module is a CSCI, CSC, or
CSU. Since REVIC doec not explicitly add effort for integration between

modules, there is no impact on effort and schedule for breaking a project into

smalley units in the same session,

REVIC generates the same effort and schedule fer a single 100,000
SLOC module or four 25,000 SLOC modules. However, this assertion is true
only if all four 25,000 SLOC modules are estimated in the same REVIC file. For
example, iet's assume four 25,000 SLOC modules based on the embedded
development mode will be developed and all default variables are left constant.
If the four modules are entered in a single REVIC fiie, an effort estimate of
1,114.8 manmonths is generated. An estimate based on a single 100,000 SLOC
module will yield an equivalent estimate. However, if the user generates a
single 25,000 module and multiplies it by four to account for 100,000 SLOC, only
844.8 manmonths are estimated. This difference is caused by the non-linear
relationship between size and effort. As size increases, effort increases at an
increasing rate and more effort is required.

A project with several modules developed dependently (i.e. run in the
same REVIC data file) takes proportionately more time than the same size
modules developed independently and run in different REVIC data files (38:2).
The exception to this rule if is the Ada development mode is used since its effort
equation has an exponent less than one. Consegquently, it is recommended that
Ada developed modules, which wili be integrated with other madules, should be
estimated in separate REVIC data files to avoid underestimating eifort (34).

Basic Limitations of Model Regarding CSCls, CSCs, and CSUs. REVIC

does not estimate in terms of CSCls, CSCs, or CSUs. Accordingly, the user
must specify madules which adequately describe the effort under consideration.

Recommended Estimating Range for M ydei. According to the REVIC

model developer, the recommended estimating range is from approximately 500
to 130,000 SLOC per REVIC data file (34). As a result, a project with four
50,000 SLOC CSCls (totaling 200,000 SLOC) should not be run in the same

70

_ER x

P

e, <
Tl . L

i S,
gl
b, .
i

Seime

data file since the data fiie size exceeds 130,000 SLOC. In this situation, the
user should run the CSZClIs in different data fites and adjust the default DT&E
rate to account for integration costs.

For example, if the user wants to estimate the develepment and
integration costs of three CSCls run in separate data files, the DT&E default rate
should be increased by three percent for each CSCl integration. For this
example, the default DT&L rate would be increased from 22% to 28% for each
data file However, this adjustment is not necessary when the Ada
Devai pment Mode is selected hecause the associated equation was calibrated
on data which included CSCl integration costs (34).

SASET. SASET assumes eftort increases at a linear rate with respect
with size:. 7, core of SASET s estimate was pravicusly defined as size,
software 1 o3, and soflware class. SASET assigns a value for software type and
class whinh, is multiplied by size to estimate development effort. Figures 4-21
and 4-%2 iilustrate the relationship between size and effort for each software:
v soviwane class.

73 Hiustrote how SASET calulates total effort. Figure 4-21 shows that a
T06.Lu0 SLOC syster. pre ect results in 330,000 manhours. Figure 4-22 shows
thar 3 100,000 SLOC manned flight project results in 360,000 manhours. As a
rasuit, SASET will provide s, estimate of 660,000 manhours for a 100,000
SLOC manned flicl, systars project (assuming all other factors and panalties

aqual one).

71

0
.

+ ~——{—— SYSTEMS /0/
it ~——O—— APPLICA

~——O-——— SUPPORT
| /‘o//wo
1 o
10 20 30 40 50 60 70 80 20 100

$LOC {000)

g 350000
300000
- 250000
o @
i 5
i £ 200000
| £ 150000
! (=]
=
; ['Y]
Lo 100060
< d
. :\1' 50050
s 0
I

Software Types in SASET

Figure 4-21. Functional Relationship Between Size and Effort for Various

o 250000

Bifort (Manhowe)

" 100000

50000

(¢]

300000 -

200000 -

150000 -

(~——— MANNED FL

- —O——— UNMANNED FL
——mm—— AVIONICS
——X— SUBMARINE
———CO—— GROUND

— -~ COMMERCIAL

_4» /:/ ///.—)(/
//«///A;j;,_,.«
i } 4 4 " + ' + 1
10 -l 30 40 8¢ 80 70 80 90
SLOC (000)

; Figure 4-22. Functivnal Relationsiiip Between Size and Effort for Various

Software Ciasses in SASET

AL e b pmpp

. 1"—’% e

.um&mmm

S

e

3 e

E

T - o
o e L
s R D
o R "‘ﬁg - o
2 — kR U,

[____3%::«

It can be deduced from Figures 4-21 and 4-22 that effort increases at a
linear rate with respect to size when all complexity factors (SBM and SSBM) and
penalties (schedule and integration) are held constant. However, the rate or
slope at which effort increase can greatly vary deoending upon the software type
and class. As size increases, the differences in effort becomes more
pronounced. The reader should note this assumption of linearity assumes that
all complexity factors and penalties are held constant. This will rarely be the
case when running the model because as the size of the project and CSCls
increase, the project will become more complex.

Impact of Breaking a Sing'e Large CSC! into Multiple Smaller CSCls.

SASET allows the user to break projects into multiple CSCls; however, total
development effort will increase due to the assessment of integration penaliies.
integration penalties are only assessed at the CSCl level and are independent
of the number of CSCs within a CSCl. SASET assigns an integration penailty of
3 to 12% on the effort for each CSCI, depending on the value of the integration
complexity factors. Table 4-24 illustrates the impact of breaking a large CSCl

into muitiple smalier CSCls.

Table 4-24. Impact of Breaking Large CSC! into Multiple Smaller CSCls in SASET

1 100,000 SLOC 170,020 hours 170,020 hours 31.8 mor.it:s 31.8 months

2 50,000 sLocC 176,686 hours 192,103 hours 35.2 months 35.2 months

4 25,000 5LOC 178,984 hours 194,623 hours 32.0 months 32.0 months

10 10,000 SLOC 182,848 hours 198,825 hours 32.2 munths 32.2 months
Assumptions: Size: 100,000 SLOC S/W Type: Applications SAWV Class: Ground

Default values for all other inputs.

73

» I

Although total development effort increases, the majority of the increase
occurs when the effort is split from one to two C. ZIs. The only reason the effort
for four CSCis is greater than for twc CSCls is because SASET increases the
value of the Software Budget Multiplier (calculated from Tier 1 inputs) as the
number of CSCls increases. However, the impact of the increased SBM value is
not significant.

The impact of breaking a project down into more CSCls on schedule is
less straightforward. Table 4-24 shows that breaking the project into two CSCls
of 50,000 SLOC generates a schedule of 35.2 months. However, a project of
four CSCls of 25,000 SLOC each generates a schedule of 32 months. This
occurs because large CSCls are the schedule drivers for multipie CSCI projects.
Iin a multiple CSCI project, SASET calculates the schedule for each individual
CSCI. The model then extends the schedule for system requirements analysis
and integration and testing because it is a multiple CSCI project. For exampile,
the one CSCI of 100,000 SLOC had a schedule of 31.8 months. if that CSCI
was part of a multiple CSC! project, SASET would still generate a scheduie of
31.8 months for that CSCI but would extend the schedule for system
requirements, system integration, and testing. This explains why the project with
the two larger 50,000 SLOC CSCls takes more time than the project with four
smaller CSCls.

With this principle in mind, one may question why the ten CSCI project
has a longer schedule than the four CSCI project. This occurs because SASET
assumes requirements analysis on each individual CSCl is started one month
after the previous CSCI (i.e., for a 10 CSCI project the requirements analysis on
the 10th CSCI would be started S months after ihe first CSCI). As aresuit, even
though the scheduie for each individual CSCI in the 10 CSCI project is shorter

74

than the four CSCi project, the schedule for the project is slightly longer because
work on the tenth CSCl is started 8 months after the first CSCI. In summary,
breaking a project into multiple CSClg will increase schedule. However, the
amount of increase is a function of the siz. of the largest CSCI in the project
and, to a lesser extent, the number of CSCls in a project (29).

Basic Limitations f Mode! Regarding C8CIs, CSCs, and CS8lis. SASET

aliows the user to describe the projact in terms of CSCls and CSCs. The
number of CSCls is limited by the amount of available convantional computer
memory. There is no limit to the number of CSCs for a CSCI ¢29).

Recommended Estim.ting Range for Model. SASET aliows the user to

input CSCls as small as 1 SLOC and as large as 1.2 miilion SLOC. However, a
Martin Marietta software engineer stated he would be cautious generating
estimates for CSCls smalier than 500 SLOC or larger than 120,000 SLOC (29).
PRICE-S. PRICE-S generally assumes development efiort increases at a
decreasing rate as project size increases. However, according to a PRICE-S
model developey, the model estimates effort in 3 relatively lingar manner between
40,000 o0 60,000 lines of code {30). PRICE-S uses composite descriptors to
model project size. The composite descriptors are pritnarily a function of
Application, New Design, and New Code. Figures 4-9 thraugh 4-11 agraphically
depict the relationship between these factors and relative cost for the project.
impact of Bieaking a Single Large CSCH into Multiie Smaller CSCls. The
model allows tte user to break large projects into multiple C3Cls. Development
time for individuel CSCls decreases as CSCi sive decreases. However, total
development sffort for multiple CSCls may be greater or less thai the effort

associated with a single, large. C.SC1 depending on how much system integration

efiont is required. PRICE-S calcuiates eftort for system integration based on

\!

u
L

contributions from each CSCI. This contribution is a function of Modified Scurce
Lines of Code, weighted Application, Platform, Utilization, Productivity Factor,
External integraticn Factor, and schedule (27:0-1-62).

Table 4-25 illustrates the impact of breaking a large CSCI into muitiple

smz..er CSCls.

Table 4-25. Impact ¢ Braaking Large CSCI Inte hMultiple Smalier CSCls In PRICE-S

3.1 faies
1 100,009 "\ne CHCH 10263 1226.8
000 line GG 1168.2 106.9 1275.2
I_ ; - . (SR R - e e
4 9000 line "SCi . 1112.3 107.3 1216.7
1G 23,000 lire- 28Cls 1066.4 107.% 1174.1
Asauriplons Sire: 120,000 SLOC New Design: 1.0
Plattarm 1.2 New Code: 1.0
Apgrcation: 816 Frocluctivity FFactor: 8.0
SO Miar 94 (6 months In fulwie) Languagr: Ada
INTEGE/ANTEGE 5 Detauk vaiuas for all olher inputs

Hasig Lirnitations of Model Regarding CSCls, CSCs, and CSUs. PRICI.-S

Allowrs the user to Jdescribe projects i terms of CSCls ana CSCs. The number
of CSCls is Emitad onty by the amount of available memory on the computer
used 0 generdi. e astimate: (30). Within the PRICE-S model, CSCs are
associated only with: davelopment C3C . A maximum of 25 CSCs are permitted

ESTREIE: TN S

P NG

Recomnendad Estimating Range for Model. Valid S1.OC inputs for
poemerasaes from one (o 999,398,999 lines of code. However, two factors

edy il e caen o Jarge projects. Specifically, the madel will not allow any

76

‘ | developmenit phase to axceed five years and the total development effort cannot

excaed 20 years (30). According to PRICE-S personne!, & general rule is to

| s divide the project into logicai, manageabie CSCls (30). The recommended
estimating range is from approximatety 5600 to 200,000 SLOC; however, the

. B model has been successfully used for signiticantly larger CSCls (39). For small

| projects (less than 1000 lines of code), it was suggested that users bypass the

, o model and simply applying company-specific measures such as lines of code per

hour to calculate the cost (30).

R SEER-SEM. SEER-SEM assumes development effort increcases at an
lf‘\‘-‘).-. B increasing rate as project size increases. This effect is explained by the

exponent associated with a key equation used to estimate development effort:

Effort =0.48,"*D**C, ™" /'

where;

Seg = Effective Size measured in SLOC

D = System Complexity

Cip = Basic Technology Constant

f = Composite Adjustment Factor obtained from several environmental

factors

The exponent associaled with "Effective Size" is greater than 1.0 which implies

an "increasing at an increasing rate” relationship. Figure 4-23 graphically

depicts the relationship betwe n size and effort for four development modes

based o SEER-8EM's default settings for a ground-based radar system.

77

4
¢]
T

1
T

|

1400 -
—===-= Watarfall
1200 T -
- W Ada Fu“ P -
@ 1000 ¢ T -
[P N P P ~ o
155; incremental o /
E 80 1 Protetype T "
£ 00 T
T
é (L
W 400 1t “/;‘f“;‘,"ﬁi
200 J/’ﬂ)’
Q + t - o -
10 20 30 40 50 €0 70 80 90
£LOC (000)

Figure 4-23. Functional Relationship Between Size and Effort for SEER-SEM

impact of Breaking a Single Large CSCI inta Multiple Smaller CSCls.

SEER-SEM allows the user to break large projeéts into muitiple CSCls.
Develapment time for individuat CSCls decreases as CSCI size decreases if no
CSCl integration is required. However, total development effort for multipie
CSCl projects may be greater or less than the effort associated with a single,
large CSCI project depending on the level of CSC) integration. Table 4-26
lustrates the impact of breaking a lorge CSC! inte multiple smaller CSCls.

Basic Limitations of Model Regarding CSCls, CSCs, and CSUs. SEER-

SEM allows the user o describe projects in terms of CSCis, CSCs, and CSUs.
The number of CSCls, CSCs, and CSUs is limited only by #t) amount of

available memory on the computer used to genarate the estimate (32)

78

Table 4-26. Impact of Breaking Large CSCl Into Multiple Smaller CSCls

in SEER-SEM
1 170,000 SLOC 1448.1 1448.2 514
250,000 sSLOC 1260.6 1287.0 39.0 39.5
4 25,700 SLOC 1007 .4 1166.4 29.5 30.8
10 10,000 SLOC 913.7 1086.0 20.5 231
Assumptions: Size: 100,000 SLOC New Code: 100%
Platform: Ground Development Method: Waterfali
Application: Radar Developrnent Standard: 2167A

Defauit values for all other inputs

Recommended Estimating Range for Model. SEER-SEM allows the

user to input CSCls as small as 1 SLOC and as large as 100 miliion SLOC.
However, the model developer stated the recommended estimating range is from
2,000 to 200,000 SLOC at the CSCl! level. He further stated SEER-SEM was
designed to model and simulate reality and that users should specify the CSCI
size that is anticipated for the actual software development (33). According to
the model developer, the upper bound was established since "software
engineering studies have shown the efficient range for CSCls is less than
100,000 lines and that CSCls over 200,000 tend to never get completed
properly” (33). A SEER Technologics support technician indicated the most
current versinn of SEER-SEM is not as fimited at the low end when using the
function sizing mode (32). (Note: This effort did not examine the function sizing

capabilities of SEER-SEM).

/9

Finding #6. Impact of Schedule Compression and Extensions

Software cost models usually follow one of two "schools of thought” when
calculating cost and schedule estimates: minimum development time or minimum
development effort. Minimum development time is the shortest time in which the
develuper can complete the project while simultaneously satisfyirig size, staffing,
and other project constraints (19:5-6). Estimates based on the minimum
development time concept are expected to result in higher total development
costs since the project requires maximum effort to satisfy the minimum
deveiopment time constraint. Conversely, the minimum development effort
concept does nat constrain the schedule and seeks to minimize total
development effort based on an "optimal"” schedule generated by the model.

This distinction is important since it impacts how models account for
schedule compression and stretchouts. For example, users cannot compress
the schedule generated by a minimum development time model because (by
definition) the schedule is already at a minimum. Software cost models also
have different assumptions regarding schedule inefficiencies. A schedule
inefficiency occurs when the user defines a development schedule that differs
from the "optimél" schedule generated by the model. Some models assume total
development effort increases when the schedule is stretched out; whereas other
modeis assume total development offort decreases. These differences in
assumptions can have a dramatic impact on estimates produced by the models.
As a result, users should understand how changes in the development schedule
will impact the project's cost.

The models were reviewed to determine if schedule compression and
wxtensions were permitted. Model assumptions regarding schedule inefficiencies

and their impact were also identified. Table 4-27 sumrmarizes this review.

80

Table 4-27. Impact of Schedule Compression and Extensions

vwore T —_-
Does Modfel Aliow Sqnedule Yes Yes Yes Yes
Compression/Extrnsions

i : Impact of Compressed Increases Increases Effort | Increases Effort | Decreases Effort

' Schedules on Total Effort Effort See Note 1 See Note 2
Impact of Extended ! , -
Schedules on Total Effort Increases Increases Effort | Increases Effort | + creases Effort

Effort

Note 1. SASET does not allow the user to compress the schedule for multiple CSCl projects.
Note 2: SEER-SEM calculates s minimum development time scheduie; however, schedule can be compressed
by reducing the probability of the most likely estimate from 50% to lower levels such as 30% or 40%.

REVIC. REVIC allows both schedule compression and extensions. The
user may compress REVIC's nominal schedule up to 75% or infinitely extend the
schedule. No schedule penalties are applied if the user-defined schedule is
within -5% or +30% of REVIC's nominal schedule. However, total development

effort will always increz e if the user-defined schedule is outside this range.

REVIC multiplies the total development effort by a schedule penalty factor based
on the amount of schedule compression or extension. Table 4-28 identifies the

schedule penalty factors assessed by REVIC.

Table 4-28. Scheduie Penalty Factors for REVIC (1:467)

| 75% < REVIC's Nominal Schedule < 85% 1.23
85% < REVIC's Nominal Schedule < 95% 1.08

95% < REVIC's Mominal Scheduie < 130% 1.00

130% < REVIG's Nominal Schedule < 160% 1.04

160% < REVIC's Numinal Schedule 1.10

81

REVIC's schedule penalties are discrete and assessed in a step function
manner. For example, if the schedule is compressed to 85% of REVIC's nominal
schedule, an 8% schedule penalty is applied. However, if the schedule is
compressed to 84%, the schedule penalty jumps to 23%. No schedule extension
penalties are assessed unless the user-defined schedule is greater than 125%
of REVIC's nominal schedule. The maximum schedule penalty for extending the
schedule is 10%. Due to the step function approach REVIC uses to assess
schedule penalties, users should be aware of these special regions when
compressing or extending schedules generated by REVIC.

SASET. The user may compress the schedule to 50% of the SASET's
nominal schedule for single CSCI projects; however, noc schedule compression is
permitted for muitiple CSCI projects. The schedule can be infinitely extended for
single and muitiple CSCI projects.

If the user specifies only a start date, SASET calculates the development
effort based on "optimal" schedule and no schedule penalties are assessed. |If
the user inputs both a start and finish date for the project, SASET compares the
user-defined schedule to the schedule generated by the model and assesses
penalties for any schedule inefficiencies.

For example, assume the user inputs a 48 month development schedule
and SASET calculates an optimal schedule of 60 months. The ratio of the user-
defined schedule and optimal schedule is 0.80 (48 months / 60 months). SASET
refers to an internal lookup tabie and assesses a schedule penalty based on the
ratio. For this example, a ratio of 0.8 corresponds to a penaity factor of 1.10
which increases total development effort by 10%.

Schedule compression has a much more pronounced impact on the

estimate than extending the schedule by the same amount. Compressing the

82

extending the schedule by the same amount adds only 1C% to the schedule.

schedule to 50% of the optimal schedule adds 25% to the estimate; however,

Figure 4-24 illustrates the schedule penalties associated with various schedules.

1.25 1
1.2
= /
K]
E 1.15 1 Cannot /
e. Compress)
2 Schedule /
-3 More Than
o 1.1 50%
=
Q
m —_
1.05 1
/
1 ; Y- t — —+ y
0o 0.5 1 1.5 2 2.5 3

Schedule Ratio

Figure 4-24. Schedule Penalty Factors for SASET

SASET assigns scheduie penalties somewhat differently for multipie CSClI
projects. Schedule penalties are assessed if the user-defined schedule differs
from the optimal schedule. However, schedule penalties are “ssessed at the
extensions, schedule compression is not permitted tor muiltiple CSCI projects.
Users can work around this limitation by defining several single CSCI projects
and compressing the schedule of each CSCI. However, this approach will not
include integration costs since SASET does ot calculate integration penalties

for single CSCI projects.

SASET also assigns a schedule penalty if the sequence of CSCls is less
than optimal. The model assumes ths optimal sequence of CSCls is from the
largest to smallest CSCI. For example, if there are three CSCls with sizes of
30,000, 50,000, and 70,000 SLOC,; the optimal sequence is 70,000, 50,000,
and 30,000 SLOC. A sequence specified in any other order is less than optimal
and a schedule penalty is assigned (29). The user may specify a CSC!
sequence appropriate for the development project; otherwise, the model
assumes the optimal sequence.

PRICE-S. The user may compress or extend the model's reference
schedule by entering activity milestone dates different from those calculated by
the model. PRICE-S assumes ail schedule inefficiencies result in increased
project costs; however, no penalties are assessed if the user-defined scheduie is
within +/- 10% of the modei's reference schedule.

PRICE-S initially calculates an internal reference scheduie based on the
CPLX1 (Complexity 1) input and the SDR or SSR date. This reference schedule
is the "normal" development schedule when no time constraints are present and
serves as a reference for estimating the added costs when schedule constraints
are imposed (31:5).

PRICE-S differs from REVIC and SASET in that the user may compress
or extend specific development phases as well as total development time. This

is accomplished by antering usar-defined datas for key develo
such as the PDR, CDR, or PCA. PRICE-S then adjusts the reference schedule
and costs to account for the effects of user-defined dates. Schedule penalties
associated with user-defined dates can be removed by setting the Scheduie

Phase Muitiplier (SMULT) equai to zero for that phase. Like SASET, schedule

compression has a much more pronounced iimpact on the estimate than

extending the schedule by the same amount. Figure 4-25 illustrates the effects

of schedule constraints on cost for PRICE-S.

RELATIVE
COSTS

200% -
180% -
W%
10% [~

120% |-

10% | S .l
o0 .50 .60 .80 1.00 1.20 140 18 1. .00

RELATIVE SCHEDULE LENGTH
(% OF MORMAL SCHEDULE

Figure 4-25. Effect of Schedule Constraints on Cost for PRICE-S (27:D-1-60)

SEER-SEM. Although SEER-SEM calctiates the optimal (minimum)
development schedule, users can "compress” the schedule by reducing the
most likely estimate from 50% to a lower value (33). This is accomplished by
adjusting the "Prcbability ' parameter. Schedule compressior results in less
total development time versus the standard minimum development time solution;
however, the likelihood of completir 4 the project on time also decreases as the
"Probability" parameter is reduced.

The model allows the user to infinitely extend the schedule. SEER-SEM

differs from the other madels regarding schedule extensicns. While REVIC,

SASET, and PRICE-S assume tatal development time increases if the user-
defined schedule exceeds the model's reference schedule, SEER-SEM assumes
total development effort decreases when the user-defined schedule is longer
than minimum development time solution. This effect is due in part to the
mode!'s assumption regarding optimum staffing rates. When the schedule is
stretched out, the model assumes staffing levels can be |lcwered resuiting in
lower total development costs.

Estimates generated by SEER-SEM are very sensitive to small changes
in the development schedule. Table 4-29 iliustrates the impact of stretching out

full-scale implementation of a 100,000 line grourid-based radar project.

Table 4-29. Impact of Stretching Out Full-Scale linplementation for SEER-SEM

Deveipment Effort | 4048 | 1227 | 1088 | 810 518
(manmonths)
Project Scheduie -
P 514 559 | 602 | 688 85.9

For the SEER-SEM model, total development effect decreases
significantly as the development schedule is extended. Since the model is
based on the Rayleigh curve, the user can theo. etically extend the scheduie
infinitely and total development effort will approash zero. However, there are
several practical limitations when perfoiming schedule tradeoffs. Most
importantly, it is unrealistic to assume a project can be stretched out indefinitely
since such projects would never be undertaknn. According to the SEER-SEM
user manual, the maximum development schiedule should not exceed 6C¢ months

from Software Requirements Analysis through CSCI integration and Testing.

86

= e e tim i

Phases prior to and subsequent to these phases are in addition to thr 30 month
schedule (19:5-2).

Users should also be aware of potential "warning signs" which indicate
the schedule has been stretched out too far. According to SEER Technologies
personnel, three factors should be monitored. If the "Peak Staff" drops below
five persons or the "Effective Complexity" rating drops below 4.0, the user has
probably extended the schedule beyond the feasible region (32, 36).
Additionaily, the user has probably defined an unrealistic set of parameters if the
"Basic Techn. ogy" or "Effective Technology" are not within a range of 1,000 to
70,000 (38). Future versions of SEER-SEM will address the impact of unrealistic
scheduie extensions by providing constraints for minimum staffing levels (32).

The mode!l developer also provided the following insights when stretching

the development schedule,

Stretch the schedule only if you will manage the project that way from

the £:ginning (they do this in Europe ... much less in the DoD where
minimum time: is the norm). Never stretch the schedule more than

25 - 40% (unless you have a real case where the project will be managed
that way). Never stretch the schedule to the point witcre the average staff
is less than about 2 - 3 people (peak about § people) uniess you know the
people. (33)

87

Finding #7. Distinctive Characteristics of Model Gata Bases

REVIC. With the exception of the Ada Development Mode, REVIC was
calibrated with "calibration points" provided by Hughes Electro-optical Datea
Systems Groups (EDSG) (34). The size and charzcteristics of the 12DSG data
base were unknown; however, all of the projects were gavernment prograims.

According the model developer, the Ada Deveioprmient Mode 2quaton
was calibrated by Bob . {eff of the former Air Force Contract Management
Division (34). The data base consisted of approximately 20 Asla CSCls
extracted from Boeinm's Ada COCOMO data pase and a large Army project. The
Army project was a 1.2 million line effort that was broken down into multiple,
smalier CSCls (34). REVIC's equations were validated ot ¢ data base of 281
completed contracts witly software invalvement from Rome Air Development
Center (34).

SASET. SASET's equations are based on a data base of 500 CSCis
made up of Martin Marietta's projects and others it gathered from industry (29).
More than S0% of the data base consisted of embedded military applications.
Most of t: @ CSCls were programmed in third generation languages
(predominantly FORTRAN) and some Assembly code. The size of the CSCls
ranged fream 700 to 90,000 lines of code with an average of 35,000 to 45,000
lines of code (29).

PRICE-S. The PRICE-S modei was deveioped on project data obtained
from a variety of commercial developers such as Lockheed, Raytheon, and
General Dynamics {30). Currently, all projects used in the model's equations are
commercial in nature. However, according to PRICE-S personnel, three

software data basas are maintained (30). The initial data base is the one on

which the model equations were developed. The second data base is used to

88

AN A

! ‘-u-'.gg

PR 41
w
.o

evaluate the model's equations and tive third is used by operational personnel to

test new and innovative changes in'the software develppment area. For
example, information related to object-oriented programming is colleciea and
retained in the third data base for potential use in later versions of

PRICE-S (30).

The model equations are evaluated yearly; however, this does not
necessarily mean the equations are changed that often. Revisions and
enhancements are made as necessary. All commonly recognized programming
languages are represented by projects in the data base.

SEER-SEM. The internal equations of SEER-SEM are based on a
mathematical model developed by Dr. Randall W. Jensen plus numerous i
extensions and enhancements to reflect changes in software development
practices and techniques (33). SEER-SEM also relies on "knowiedge bases" to
provide detailed inputs for model estimates. According to the model's user
manual, a knowledge basc provides detailed input values based on a general
description of the program (37:Appendix A). The user enters four inputs
describing the program (Platform, Application, Development Method, and
Development Standard) and the model selects the appropriate setting for the
detailed inputs. The user may modify any of the detailed parameters if
additional information is available.

The knowledge bases are heuristic in nature and frequently updated to
reflect the latest software development trends (36). Qrganizations are evaluated
to determine what changes are occurring in the sc*tware development \
environment and then knowledge bases are adjusted to account for these |
changes. For example, if today's software developers use more m~ern

development practices and automated tools than in the past, the inputs tor the

89

knowledge bases are adjusted to ref'sct these changes (36). Both commercial
and military projects were used to develop SEER-SEM's kncwledge bases and
all commonly used programming languages (FORTRAN, Assembly, Ada, etc.)

are represented (32).

30

Finding #8. Results of Baseline Test Case

} A simple baseline test case was developed to gain a better understanding
o
of why the modeils generate different estimates. The purpose of the test case
was not to quantify the differences between mode! estimates, but to explain the

underlying reasons for the differences. Additionally, it was hoped this effoit

would result in greater insight into the feasibility of normalizing the models and
the difficuities associated with normalization efforts.
Test Case Limitations. Due to the time constraints associated with this
research effort, a simple, generic development project was proposed. This
. approach is a significant limitation since the case does not 1zpresent the actual
complexity associated with a real development project. However, in the
researchers' opinion, it was deemed adequate to illustrate the differences
" between model estimates.
| Test Case Scenario. The foliowing infermation provides details
| regarding a hypothetical scftware development project. This hypothetical case
| is a modified version of a baseline test case presented in Sydney Rowland's "A
Comparative Analysis of the GE PRICE-S and the CEl System-4 Cost Estimating

Models" (40). The assumptions for the case inclt e:

1. The development project will result in an aircraft avionics system.
Tailored DoD-STD-2167A documentation is required.

2. The waterfall life cycle approach is used and integration complexity for
all CSCls is average.

3. The project consists of three CSCls which are referred to as CSCI1,

CSCI2, and CSCI3. Each CSClis 100% New Design and New Code.

'
i
i
1

91

4. CSCI1 is programmed in Aca and consists of two CSCs developed by
average personnel with nominal sottware tools. The first CSC has 20,000 SLOC
and the szcond CEC consists of 30,000 SLCC.

5. CSCI2 is programmed in Assembly by above average programmers
with nominal software tools. The CSCI has 80,000 SLOC.

6. CSCi3 is programmed in Ada by average personne! with nominal
software tools. The CSCi has 45,000 SLOC.

7. The project is estimated from System Software Requirements Analysis
through System Test.

8. The development teams work 152 manhours per month.

Model Inputs. Where possible, suggestions from model vendors and
developers were obtained during development of the baseline test case. Unless
noted otherwise, the researchers used default input values for each modél. See
Table 4-30 for a summary of model! inputs used for the baseline test case and
Appendix B for detailed mode! input sheets.

REVIC. Each CSCl was loaded into a separate data file to avoid
exceeding the recommended estimating range of the model. As a result, three
data files were created for the REVIC estimate. The first data file, which
represented CSCI1, consisted of two CSCs. Integration was not added to CSCls
1 and 3 because the Ada Development Mode equation was calibrated on CSCls
which includes integration effort. The embedded development mode was used
for CSCI2 since the entire CSCI was programmed in Assembly. The DT&E
parameter for CSCI2 was also changed from 22% to 28% to account for

integration with the other CSCls.

92

Table 4-30. Summary cf Key Model Inputs for Baseline Test Case

CSCIi1 | Separate Cata File for | One Data File for Total | One Data Filc for Total | One Data File for Total
Each CSCI Estimate Estimate Estimate
2 CSCs loaded into 2CSCs 2C383s 2CSCs
into this file CSC1: 20K SLOC CSC1: 20K SLOC CSC1: 20K SLOC
CS8C1: 20K SLOC CSC2: 30K sLOC CSC2: 30K SLOC CSC2: 30K SLOC
CSC2: 30K sLOC S/W Class: Avionics Avionics Platform PROFAC: 5.00
Ada Dev Mode S/W Type: Application | Flight Application APPL: 5.50
RELY: HI S/AW Documentation: Ada Development PLTFM: 1.80
Complex Method SSR Date: 894
Default values for all Man Interaction: 2167A min Develop- INTEGE & INTEGI: 0.50
other inputs Complex rnent Standard CPLX1:1.00
Defauit values for all Default values for all Default values for all
other inputs other inpuis other inputs
CSCI12 | Separate Data File S/W Class: Avionics Avionics Platform PROFAC 5.00
Embedded Dev Mode | S/W Type: Application | Flight Application APPL. 550
PCAP- HI SAW Experience Wateifall Development PLTFM 1 80
LEXP: HI Simple Metiioa SSR Date. 894
RELY: HI Programming 2167A min Develop- INTEGE & INTEGI 050
DT&E: 28% Language' Complex ment Standard CPLX1 080
80K SLOC S/\W Docuimentatior:: Programmer Capability. | 80K SLOC
Complex Nom, HI, VHI
Defauit values for ali Man interaction: Programmer Lang Exp: | Non-Executable SLOC- 0
other inputs Complex HI, VHI, EHI
80K SLOC Language Type: DefauR values for all
HI, Hi, VHI other inputs
Defautt values for all AOK SLOC
other inputs
Oefault values for all
other inputs _
CSCI3 | Separate Data File S/W Class: Aviomics Avionics Platform PROFAC S W
Ada Development S/W Type: Application | Flight Application APPL. 550
Mode
RELY: HI S/W Ducumentation: Ada Development PLTFM 1 80
Complex Method SSP. Date. 894
45K SLOC Man Interactioin: 2167A min Davelop- INTEGL & INTEGI 0 56
Complex ment Standard CPLX1: 100
Default vaiues for all 45K sLOC 45K SLOC
other inputs
Default values for all Default values for all
L . Lother inputs _other inputs

Default values were used for all inputs with the exception of PCAP, LEXP,
RELY, and DT&E. PCAP and LEXP were adjusted to Hl for CSCI 2 to account
for improved programmer capabilities. The model developer recommended
adjusting RELY to Hi for the baseline case (34). (See Appendix B for modei
input sheets.)

SASET. All CSCls were run in the same file. The avionics S/W Class
was selected and the S/W Type was Applications. Default input values were
used for all inputs with the exception of software documentation, man
interaction, software experience, and programming language. Software
documertation was set to COMPLEX since tailored DoD-STD-2167a standards
apply. The man interaction input was adjusted to COMPLEX to account for the
avionics SMV Class. For CSCI2, the software experience input was set to
SIMPLLE to account for improved programmer capabilities with regard to
Assembly programming; whereas, the programrming language was adjusted to
COMPLEX to reflect the use of the Assembly language. (See Appendix B for
model input sheets.)

PRICE-S. Defauit vaiues were used for all inputs with the exception of
PROFAC, APPL, SSR date, and CPLX1. Since the mode! was not calibrated to
a specific development environment, subjective decisions were made regarding
several key input parameters such as PROFAC and APPL. After reviewing the

_r

PRICE-S Reference Manual and reiated documentation, values for the PROFAC

and APPL were 5.00 and 5.50, respectively. INTEGE and INTEGI inputs were
set to 0.50. Lacking any information to the contrary, these inputs were deemed
adequate for this effort; however, users should be aware of the sensitivity of
these parameter s and their impact on the resulting estimate.

The SSR date was adjusted to ensure no schedule penalties were

94

encountered. CPLX1 was adjusted for CSCI2 to account for differences in
programmer capabilities. (See Appendix B for modei input sheets.)

SEER-SEM. The avionics platform and flight application knowledge
bases were seiected to represent the avionics flight system. The Ada
Development method was selected for CSCls 1 and 3; whereas, the waterfall
development method was selected for CSCI 2. The development standard was
2167Anan for all CSCls. Knowledge base inputs for CSCI2 were adjusted to
account for differences in programmer capabilities. (See Appendix B for mode|
input sheets.)

Summary of Model Estimates. Model estimates for each CSCI and the

total project are summarized in Table 4-39.

Table 4-31. Baseline Test Case Results for Each Modei in Manmonths

CSCl1 . 1104.2 1429.5 719.4
CS8Ci2 B37.2 545.3 520.2 1013.0
CSCl! 3 376.7 983.8 1211.8 634.0
Project 1648.5 2643.3 3161.5 2366.4

Discussion of Results. SASET and PRICE-S provided significantly
higher estimates for CSCls 1 and 3 compared to REVIC and SEER-SEM.
However, SASET and PRICE-S provided lower estimates for CSCI2. The
foliowing paragraphs discuss some of the underlying reasons for these
differences.

Excluded Development Phases/Caost Elements. REVIC does not include

the System Requiremenis/Design phase or the necessary effort to meet DoD-

STD-2167A documentation requirements. These factors contribute to REVIC's

96

low estimates for CSCls 1 and 3. When using REVIC as a cross-check to a
different model, the user would have to estimate and add additional effort for
these omissions.

Treatment of Different Lanquages. It seemed unusual that SASET and
PRICE-S provided much lower estimates for CSCI 2 despite being higher for
CSCis 1 and 3. This is due in part to their treatment of the Assembly language.
SASET and PRICE-S are more sensitive to language differences than REVIC or
SEER-SEM. SASET and PRICE-S assume prograinmers can write mare lines cf
Assembly code than Ada code for a given period of time. For example, SASET
converted the 80,000 lines of Assembly to 26,667 lines of a "Equivalent New
HOL" and based its estimate on this number.

REVIC and SEER-SEM are less language depand~nt and do nc* make
similar adjustments for the Assembly language. "or example, with the exception
of using the Ada Development Mode for Ada code, REVIC does not differentiate
between languages. As a result, it may be appropriate to research a proper
software language conversion mefric to account for language differences when
using REVIC.

Sensitivity of Inputs/Cost Drivers. Even with this simple scenario, there

was obvious subiectivity regarding appropriate input values. For example,
subjective values for PROFAC and APPL were used for PRICE-S. Yet, the

5l is vEry sensitive 1o smali changes in these parameters and smail

(e}
€L
o

favorable adjustments can significantly lower the estimate. With REVIC, the
default vaiue for MRES was used; however, based on the maodel's definition for
this input, a case could be made tc adjust this value {(which would have

dramatically increased REVIC's estimates). Similar points could be made abouit

various inputs for SASZT and SEER-SEM. Thus, a different person could use

-
“

the same test case and generate completely different estimates.

in the test case, it appears that one of the reasons why SASET and
PRICE-S generally provide higher estimates is their sensitivity to the Platforin
selected. During our research efforts and sensitivity analyses with the models,
we noted adjustments to the PRICE-S Platform input and SASET Class of
Software input significantly impacted the estimates. For example, SASET's
equations reveal that an avionics project estimate will be approximately 80%
greater than a ground based system project estimate. SEER-SEM does make
adjustments for PLATFORM by changing the knowledge base, but these
adjustments dc not appear to be by the same order of magiitude as SASET or
PRICE-S.

The selection of the development mode is another contributing factor
explaining REVIC's lower estimates for CSCls 1 and 3. The reader should recall
each development uses a different development effort equation. Specifically,
the Ada Development mode, used in CSCls 1 and 3, has an exponent iess than
1 where effort increases at a decreasing rate as effort increases. This is
significant because the Ada development mode estimates less effort than the
embedded or semidetached development modes (for CSCls greater than 20,000
SLOC). Conversely, the embedded development mode equation used for CSCI2
has an exponent of 1.2, The different equations and exponents may explain why
REVIC's estimate for CSCi2 are cioser to the estirates caiculated by the other

models.

Unanticipated Results. It was anticipated that SEER-SEM would estimate
more development effort than the other models since it is based on the minimum
development time concept. However, this assumption was not accurate for the

baseiine test case. SEER-SEM calculated the second lowest project estimate

97

for the four models. Although SEER-SEM's estimates were always higher than
REVIC's estimates, we cannot explain why it had iower estimates than PRICE-S
or SASET for CSCls 1 and 3. There may not be as much difference between
SEER-SEM's minimum development time schedule and the other models'

optimal schedule as originally believed. (See Chapter V, Conclusiens and

Recommendations, for more details regarding this situation.)

Conclusion. Recognizing the limitations cof this simple baseline test
case, several underlying reasons for models differences were identified and the
researchers began to appreciate some of the difficulties associated with model
normalization. One problem is that the models require different inputs and,
outside of SLOC, they have different cost drivers and equations. For example,
REVIC's development mode equations are effort drivers, but SASET does not
have development mode equations. This makes it very difficult to adequateiy
quantify the differences between the models.

The proprietary nature of SEER-SEM and PRICE-S also contribute to
difficulties in comparing models. Aithough many of PRICE-S and SEER-SEM
equations are published, many other equations are proprietary. Consequeritly, it
is difficult to fully understand why these models provide different estimates than
SASET and REVIC (whose equztions are non-proprietary).

Project complexty also impacted the bas line test case. As project
fficull identifying equivaient
input values for each mcdel. The initial baseline test case ceveloped for this
project was much more complex; however, it had to be simplified due to the
incredible number of difference . between the medels. As aresult, a very simple

baseline case was used to avoid biasing the test case toward one of the models

and allow the researchers {0 input logical and consistent values for each model.

R G g

Another difficulty with normalization is identifying an appropriate
reference model. in other words, what model do you plan to normalize the
model result to? Should the analyst identity SEER-SEM as the reference model
and normalize all the other models to it or =hould REVIC be the reference
model?

Furthermore, assuming each model had equivalent costeffort drivers and
identical parameters values, the madels would provide different estimaies since
they were calibrated on difterent data bases. For example, the data base used
to calibrate REVIC was significantly different than that used by PRICE-S.
Likewise, SASET's data base bears little semblance to the data base used by
Dr. Jensen to develop the initial SEER-SEM equations.

This does not imply it is useloss to try to understand why models give
different estimates. On the contrary, it can be helpful to understand these
differences if more {han one model is being used to estimate the same project.
Howeaver, based on the effort expended during this baseline test case, it became
obvious that model normalizatior: is an exercise in futility for the average
software cost model user. It is the researchers’ opinion that the diferences in
definitior: ; for model inputs, internal equations, #nd key assumptions make it
nearly impossible ty normalize the models (without indiscriminately adjusting
model inputs to gat equivalent estimates).

Ultimately, we feel users should become ex
two models. As the user becomes more experiencad with the models, he or she
should gain a great dea! of insignt in the capabiiities of the model, the
apprapriate value for inputs, and proper calibration settings based on the project
being estimated. This approach is more logical and defensible than rurining four

different models and selecting the miodel with the desired cross-check estimate.

99

V. Conclusions and Recommendations

Overview

The purpose of this research effort was to develop a consolidated
document which highlights the differences in definitions, assumptions, and
methodologies used by the REVIC, SASET, PRICE-S, and SEER-SEM cost
models and examines the impact of these difterences on the resulting estimates.
Conclusions regarding this effort are addressed in context of the three research
oojectives outlined in Chapter |, Introduction. Although many differences
between the models were identified, this document does not cover all software
development issues and is not a comprehensive source. Therefore, several

recommendations for additional research are presented.

Conclusions
Three central research objectives guided this research effort. The
conclusions will be addressed in context of these objectives.

Research Objective #1. What differences exist between the cost models?

Differences between the modaels exist at nearly evary level. At the onset of this
project, the researchers did not realize the underlying equations and
assumptions of the models were so diverse. However, as the research effort
progressed, these differences becames more and more evident.

Each mode! uses distinctly differsn 1g development
effort. In the case of REVlC, different equations are used within the same .model
depending on which development mode is selected. Additionally, the basic
development concept (minimum development time versus minimum development

effort) varied between the models.

100

e

Although the mode! developers' definitions for source lines of code were
fairly consistent, each model has its own set of input parameters for describing
the software development environment. The researchers determined it was
nearly impossible to do a une-to-one correlation between model inputs and
settled on a broad categorization of key model inputs.

The models also used different methodologies when estimating multiple
CSCl projects and the impact of schedule compression and extensions. For
example, SEER-SEM assumes total development effort decreases if the project
is stretched out; however, the other models assume total development effort
increases if the project is stretched out.

Lastly, the data bases used by each model were significantly different.
Therefore, even if the models had the same underlying assumptions and
equations, the estirnates would vary due to differences in data base size,
composition, and project attributes. |

Research_Objective #2. How do these differences impact the resulting

cost estimates? Unfortunately, this question could not be answered in
quantitative terms. For example, REVIC did not incliude a Systems
Requirements Analysis/Design development phase. It was clearly beyond the
researchers’ abilities to quantify the dollar impact of this omission. Likewise,
SASET has m~ny rnore project attributes than the other models; however, the
additional parameters resulted in anly minor increases to the model estimate.
As a result, differences were identified in relative terms rather than quantitative
terms where possible.

Research Objective #3. To wnat degree can we explain and adjust for

differences between cost models? The researchers found it was not particularly

difficult to identify and discuss differences between the models. However, due to

101

the con’ slexity associated with reaiistic development scenarios coupled with the

different equations and underlying model assumptions, it is the researchers’

opinion that mode! normalization is virtually impossible. The simple baseline

test case supports this assertion. Of course, the user could systematically adjust

the various model inputs to generate equivalent estimates. Yet, this approach g
defies logic since the user should have initially entered model inputs he or she

adeemed appropriate for the development effort.

Recommendations

This research effort did not address all possible facets of software cost
estimating and several areas require additional research. First, one model
developer questioned if many commonly used attributes are still applicable due
to recent improvements in computer hardware (29). For example, additional
research may determine that computer memory, utilization rates, or other factors
are no longer constraining factors for software development projects.

Second, it wouid be interesting to perform a series of sensitivity analyses
to determine how SEER-SEM's minimum devaloprnent time solution compares to
the minimum development effort solutions calculated by the other modals.
Although SEER-SEM's estimates were expected to be higher than the other
models, the results of the baseline test case indicate this is not always true.

Third, additional research regarding the composition of each madel's data
base would also be beneficial. This research effort provided only a brief
overview of the data bases, yet significant differences were highlighted.

Identifying the estimating level (project versus CSCi), programming language,

development contractor, and other distinctive characteristics could provide

additional insight into why one model estimates a particular class of software
more accurately than another.

Fourth, this effort focused primarily on how models estimate effort.
Another similar study should be undertaken to determine how the model's
estimate schedules. For example, SASET generally estimated shorter
schedules than REVIC even when it generated higher effort estimates. A
specific issue to address would be the models' assumptions on overlapping
phases and manpower staffing.

Fifth, additional research needs to be accomplished on the feasibility of
normalizaticn. Is it possible to objectively quantify the source of differences
between model estimates? If so, how does one decide which modul to
normalize to and what are the benefits of normalization (does it result in a better
estimate)? _

In conclusion, this research effort identified many key similiarities and
differences between four Air Force preferred software cost estimating models. |t
is the researchers' opinion that the differences in definitions for model inputs,
internal equations, and key assumptions make it rnearly impossible for the
average model user to normalize the models. This does not imply it is useless to
try to understand why models give different estimates. It is hoped that this effort
resuited in a useful, consolidated document which explains the technical
characteristics of the models and helps model users understand why the models

praduce different estimates.

103

Appendix A: Checklist Used to Examine Cost Models

1. What DoD-STD-2167A phases and activities are included in the estimate
produced by each model?

a. Identify phases and activities specified by Mil Std 2167A.

b. Deiermine what DoD-."TD-2167A phases and activities are included in the
| astimate produced by each maodel.

l c. What are the basic assumptions or default values for the distribution of effort
: across the development phases?

| d. Can the default allocation percentages be changed by the user?
' \ 2. What general development activities and specific cost elements are
estimated?
! a. What generai development activities are included in the model estimates?

b. What specific cost elements are estimated by the model? What do they
\ mean or raprasent?

o . If the model includes the cost of documentation, is that cost separately
o identified?
|

d. If the model includes the cost of program management, is the cost separately

identified?

3. How does each model define a source line of code and how are
language differnces accounted for?

a. What is each model's definition for non-Ada source lines of code?

g b. Do the models differentiate between Ada and non-Ada SLOC? If so, what
o are the modeis' definition of "Lines of Code" for Ada?

: c. Do the models account for language differences?

104

4, Which model factors are key cost drivers? What estimating
methodology was used to develop these factors?

a.

5.

Categorize important model factors based on personnel capabilities,
development environment, project requirements, and target environment.

Identify key cost drivers used by each model to develop estimates (i.e which
factors have the most significant impact on development effort?).

how were these factors developed? What estimating methodology was

used? Linear regression or some gther statistical method? Expert
Judgment? Heuristics? Composite?

Hew does the model account for schedule compression and

extensions?

a.

b.

Does the medel allow schedule compression and extensions?

What, if any, penalties are assessed when the schedule is compressed or
extended?

How sensitive are models to relatively small changes in schedules?

. What implications does project size have on model output?

What is the basic assumption in the modei concerning size and effon? Does
effort increase at an increasing or decreasing rate as size increases?

What are the basic assumptions in the modei concerning size and number of
CSCls, CSCs and CSUs in relation to the totai effort and schedule? For
example, if the total program is 100K SLOC, will breaking the project intu
muliiple smaller units resuit in less or more totai effort? Longer or shorter
schedula?

What are the basic limitations of the model in terms of the size and number of
CSCls, CSCs and CSUs?

Is there a minimum or maximum size for the project or a CSCI? What is the
recommended estimating range for the model?

7. Are there any distinctive characteristics about the data hase(s) used by
the various models?

a.

b.

9]

How many projects were in tha database used to develop the model?

Did it have any unique characteristics? If yes, haw were these special
characteristics normalized in developing the generic model?

How much of the database was military systems versus cemmercial systems?
Embedded systems versus MIS systems?

What programming languages were included in the database (% each)?

What was the distribution of the records in the database by size (project
level, CSCI, CSC, CSU)?

106

Appendix B: Model Inputs for Baseline Test Case

Sea subsequent pages for model inputs and resuilts for the bassline test

. case.

7

L S W TS Y1 L I Y S S SIS S [/TSPy SR SENATRRGR. $S I SN S Y —n o SIS ET Sy S SO St WU UL WSS 0. S s S b 97 1Y ST S TS5 Sy 1 PSS Py Y4 A7 WS Sy Y.

MODEL INPUTS AND RESULTS FOR REVIC

. REVIC MODEL PHASE DISTRIBUI'ION 08-03-1993 02:55:15

LoC to ba developed is 50.0 XKDSI (152 HRS/MM, § 73.00 /HR)
PHASE & END REVIEW EFFORT SCHEDULE Fsp cQsTs
* (mm) (months) (people)

S/W RQMTS ENG (SRR) 37.2 8.2 4.5 413,319
PRELIM. DESIGN (FPDR) * 71.4 10.7 6.7 792,194
CRITICAL DESIGN (CDR)* 90.0 6.9 13.1 998,854
CODE & DEBUG (TRR) * 68,3 4.1 16.6 787,751
INTEGRATE & TEST (FQT)* 50.7 5.8 14.0 895,524
DEV TEST & INT (DT&E) 68,3 7.7 R.9 757,751
TOTALS 416.0 43.4 S 4,615,394

Total Productivity = 161.1 (24s.8 pProgrammers only) louc/mm
Environmantal Modirier = 1.150 with a NM schadule

| Total Direct Labor Hours = 63,225
ADA software Duvalopment Mode
* - Itams are included in Total Productivity calculation

REVIC MODEL ACTIVITY DISTRIBUTION

ACTIVITY S/W RQMTS ENG PRELTM DSGN PROGR. IsT
, (SRR) (PUR) (CDR & TRR) (FQT)
i RQMTS ANALYSIS 17.13 7.14 4.7% 1.61
! PRODUCT DESIGN 5.21 29.99 9.50 3.23
i PROGRAMMING 2.23 8.57 87.07 32.28
’ TEST PLANNING 1.49 4.28 9.50 3.23
VERIFY & VALIDATE 2.98 5.71 15.83 20.18
PROJECT OFFICE 4.47 7.85 11.08 6.46
CH/QA 1.49 2.14 11.08 7.26
MANUALS] 2.23 5.71 9.50 6.46

NOTES: 1.0 MM = 152 HOURS
THE PROGRAMMING PHASE INCLUDES BOTH CRITICAL DESIGN
AND SOFTWARE CODE & DEBUG.

U

109

REVIC MODEL RESULTS FOR

-3 SIGMA
KDSI 50.0
MANMONTHS 416.0
SCHEDULE 43.4
TOTAL HOURS 63,225
TOTAL COSTS $§ 4,615,394

STANUARD DEVIATION =

Environmental Factors fo:-
ENVIRONMENTAL FACTOR RATI
Analyst Capability
Programmer Capability
Applications Experiesnce
Virtual Machina Experisnce
Prog. Language Experience
Exacution Time Constraint
Main Storage Constraint
Virt. Machine Volatility
Computar Turnarcund Time
Requirements Volatility

The environmental mwodifiar i
Equivalent SEER Ctb = 5,707
Varsion 9.1 - 23 November 19

NG

CEEFEEEEEE

91

$

0.000 KDSI

1.00

4,963

NOMINAL +3J SIGMA
50.0 50.0
416.0 416.0
43.4 43.4
63,225 63,225
4,615,394 S 4,615,394
08-03-1993 02:55:29
ENVIRCNMENTAL FACTOR RATING
Product Reliability HI
Data Base Sizas NM
Product Complexity NI
Required Raeuga NM
Modern Programming Practices NM
Use Of S/W Tools NM
Required Security UN
Mgut Reserve For Risk vL
Required Schedule NM
Softwvare Developmant Mode ADA

oA

REVIC MODEL RESULTS FOR 08-03-1993 02:55:34
CDRL INITIAL PAGE ESTIMATES FOR DOD-STD=-2167A/2168

SSDD, SRS, STD, AND STR PAGES = 671 ea.
IRS PAGES = 343

SDP P..GES = 175

SDD (PRELIMINARY) PAGES = 1666

SDD PAGES (FINAL, WITHQUT LISTINGS) = 5000
STP, CSCM PAGES = 135 ea.

IDD PAGES = 676

SPS, SPM PAGES = 72 ea.

SUM, CRISD PAGES = 67 ea.

FSM PAGES = 53

VDD PAGES APPROXIMATELY 10 PER FORMAL MEDIA RELEASE.

5/W DEVELOPMENT FOLDER PAGES NOT INCLUDED HERE.

Page counts are approvimaile for each documant. See DOD-STD-2167A for
an explanation of the acronyms and a description of their content.

INDEX # NAME LE MP HE

1 20000 20000 20000

2 3gaooa 30000 30000
INDEX # NAME ADSI DM cM IM

111

REVIC MODEL PHASE DISTRIBUTION 08-03-1993

LOC to be daeveloped is 80.0 KDSI {152 HRS/MM, S 73.00
PHASE & END REVIEW EFFORT SCHEDULE TSP

(rom) (months) (people)
S/W RQMTS ENG (SRR) 71.8 10.2 T.1
PRELIM. DESIGN (PDR) * PP 13.2 10,4
CRITICAL DESIGN (CDR)* 173.4 8.5 20.5
CODE & DEBUG (TRR) * 131.6 5.1 25.9
INTEGRATE & TEST (FQT)» 155.5 7.1 21.9
DEV TEST & INT (DT&E) 167.4 9.5 17.7
TOTALS 837.2 53.5 S

Total Product!vity = 133.8 (205.0 programmers orly) loc/mm
Environmental Modifiar = 0,940 with a NM schedule

Total Diract Labor Rours = 127,259

EMBEDDED software Daevelopnent Mode

*# - Items are included in Tota' ‘’roductivity calczulation

REVIC MODEL ACTIVITY DISTRIBUTION

ACTIVITY S/W RQMTS ENG PRELIM DSGN PROGR. 1
(SRR) (PDR) (CDR & TRR) (

RQMTS ANALYSIS 33.o1 13.75 9.15

PRODUCT DESIGN 10.05 57.:7 18.30

PROGRAMMING 4.31 16.51 167.75

TEST PLANNING 2.87 8.25 18.30

VERIFY & VALIDATE 5.74 11.00 30.50

PROJECT OFFICE 8.61 15.13 21.35

CM/QA 2.87 4.13 21.35

MANUALS 4.31 11.00 18.30

NOTES: 1.0 MM = 152 HOURS
THE PROGRAMMING PHASE INCLUDES BOTH CRITICAL DESIGN
AND SOFTWARE CODE & DEBUG.

02:59:25
/HR)
COSTS

796,280
1,526,204
1,924,344
1,459,848
1,725,274
1,857,988

9,282,918

& T
FQT)

REVIC MQDCIL, RESULTS FOR

-3 SIGMA
KDST 80.0
MANMONTHS 837.2
SCHEDULE $1.5
TOTAL HOURS 127,299
TOTAL COSTS ¢ 9,289,938

$

STANDARD DEVIATION = 0.000 KDSI

Envivonmental Factors for

ENVIRONMENTAL FACTOR RATING
Analyst Capability NM
Programmer Capability HI
Applications Experienca NM

Virtual Machihe Experience NM
Prog. Language Experience HI
Execution Time Constraint °~ NM

Main Stoerage Conztraint NM
Virt. Machine Volatility NM
Computer Turnaround Time NM
Requiremants Volatility NM

The environmental modifler is
Equivalent SEER Ctb = 6,38)
Ve sion 9.1 - 23 Wovember 1991

VALUE
1.00
v.86
1.00
1.00
0.95
1.00
1.00
1.00
1.00
1.00

0.940

Cta =

11

NOMINAL +3 SIGMA
80.0 80.0
837.2 817.2
$3.5 53.5
127,259 127,259
9,289,938 $ 9,289,938

08-03-1993 02:59:38
EHNVIRONMENTAL FACTOR RATING
Product Rellability HI
Data Base Sicze NM
Product Complaxity NM
Raquired Raeuse NM
Modern Proyramming FPractices NM
Use Of S/W Tools NM
Required Security UN
Mgut Resacve For Risk VL
Required Schedule NM
Software Development Mode B

5,843

HRA Ay

RO e b e e e
o
o

PASAFAIR SUTLAE 7 TR T

REVIC MODEL RESULTS FOR 08-03-1993 02:59:43
CDRL INITIAL PAGF ESTIMATES FOR DOD~STD-2167A/2168

$SDD, SRS, STD, AND STR PAGES = 1071 aea. B
IRS PAGES = 543

SDP PAGES = 250

SDD (PRELIMINARY) PAGES = 2666

SDD PAGES (FINAL, WITHOUT LISTINGS) = &00vV

STP, CSOM PAGES = 210 ea,.

IDD PAGE3S = 1076

SP.;, SPM PAGES = 110 aa.

5UM, CRISD PAGES = 105 aa.

FSM FAGES = 81

VOND PAGES AFPROXIMATELY 1U PER FORMPL MEDIA RELEASE.

5/W DEVELOPMENT FQLDER PAGES NOT INCLUDED HERE.

Page counts are approximate for each document. 5ee DID-STD-2167A for
an explanation of the acronyms and a dadcription of their content.

INDEX # NAME LE MP HE
1 80000 80000 80000

INDEX # NAHE ADSI DM CM IN

REVIC MODEL PHASE DISTRIBUTION 08-03-1993 03:01:36

. LOC to be daveloped is 45.0 KDSI (152 HRS/MM, $ 73.00 /BR)

i d PHASE & END RLEVIEW EFFORT SCHEDULE FSP COSTS

' {(mm) (months) (peoplae)

' S/W ROMTS ENG {SRR) 33.7 8.0 4.2 374,307

' PRELIM. DESIGN (PDR) * 64.7 10.4 6.2 717,421

i CRITICAL DESIGN (CDR)¥ 81.5 6.6 12.3 904,574

I CODE & DEBUG (TRR) * 61.3 4.0 15.5 686,27
INTEGRATE & TEST (FQT)* 73.1 5.6 13.1 81U, ¥
DEV TEST & INT (DT&E) 61.8 7.4 8.1 686,229
TCTALS 376.7 42.0 S 4,179,757

Total ¥Productivity = 160.1 (245.3 programuers only) loc/mm
Environmenctal Modifier = 1.1%0 with a NM schad'le

Total Direct Labor Hours = 57,257
ADA Softwara Developmaent Mnode
* - Items are jncluded in Total Productivity calculation

REVIC MODEL ACTIVITY DISTRIBUTION

ACTIVITY 5/W RQMTS ENG PRELIM DSGN PROGR. I &7
(SRK) (FOR) (COR & TRR) (FQT)
RQMTS ANALNSIS 15.32 6.47 4.30 1.46
PRODUCT DESIGN 4.72 i7.16 8.60 2.92
PROGRAMMING 2.02 7.76 78.8% 29.24
TEST PLANNING 1.3% 3.88 8.60 2.92
VERIFY & VALIDATE 2.70 5.17 14.34 18.27
PROJECT OFFILCE 4.05 7.11 10.04 5.85
CM/QA 1.35 1.94 10.04 6.58
MANUALS 2.02 5.17 8.60 5.85

NOTES: 1,0 MM = 152 HOURS
T THE PROGRAMMING PHASE INCLUDES BOTH CRITICAL DESIGN
AND SOFTWARE COLE & DEBUG.

REVIC MODEL RESULTS FOR

| ~3 SIGMA NOMINAL +1 SIGMA
I KDS1 45.0 453.0 453.0
MANMONTHS 376.7 376.7 376.7 .
SCHEDULE 42.0 42.0 42.0
TOTAL HOURS 57,257 57,237 %7,2587
TOTAL CQsTS § 4,179,756 5 4,179,756 H 4,179,736

STANDARD DEVIATION = 0.000 KDSX

Enviropmental Factors lor 08-03-1993 03;0L: 00

ENVIRONMENTAL FACTOR RATING VALUE ENVIRONMENTAL FACTOR RATING VALUE
) Analyst Capability NM 1.00 Product Reliability HY 1.15
' Programuar Capability NM 1.00 Data Base 5iza NM 1.00
' Applications Lxperiance NM 1.00 Product Cumplexity NM 1.00
' Virtual Machine Exparience NN 1.00 Raguired Reuse NM 1.0u
i Prog. Language Experiencs NM 1.00 Modern Programusing Practicas N 1.00
| Exncut.ion Time Condtraint NM 1.00 Use Of S/W Tools NM 1.00
| Maii Storage Constraint NM 1.00 Required :ecurity UN 1.00
| virt. Machine vVolatilicy NM 1.00 Mgumt Resswive For HKisk vL 1.0u
' Computexr Turnaround Timae NM 1.00 Required Schedule NM 1.00

Kequiroments Volatility NM 1.00 Softwars Davelopaent Mode ADA L.00

. The environaental wodifier ic 1.15%0

! Egquivalent SEER Ctb = 5,707 Cta » 4,961
{ Version 9.1 - 23 Novembar 1991

[
|

16

“ nnunxuﬂ'M

Lt prbhany

PEVIC MODEL RESULTS FOR 08-01-1993 03:01:54
CORL INITIAL PAGE ESTIMATES FOR DOD-STD-21607A/2168

S3UD, SRS, STI'. AND STR PAGES = 607 aea.
IRS PAGLS = 133

50P PAGES = 162

SDD (PRELIMINARY) PAGES = 1300

SDU PAGLS ({FINAL, WITHOUT LISTINGS) =~ 4500
S5TP, CSCM PAGES = 122 ea.

IDD PAGES = 510

SPS, SPM PACGES = 66 aea.

S5UM, CRL1SD PAGES = 61 aen,

FSM PAGES = A

VDD PAGES APPROXIMATELY 10 PER FORMAL MEDIA RELLASE.

S/W DEVELOPMENYT FOULDER PAGES NOT INCLUDED HERE.

Page counts are approximate for each document. See DOD-STD-2167A for
an explanacion of the acronyms and a description of their content.

INDEX # NAME LE MP HE

1 43000 45000 45000

INDEX # NAME ADST DM M M
17

MODEIL. INPUTS AND RESULTS FOR SASET

1y

waannsy Sygtam

Class of Software
Hardwacre System Type

Pct of Memory Utilized
S/W Configuration Iteus
Devaelopment Locations
Custoner Locations

Dev, Workstation Types
Primary Software Language
Pet of Micro-Codae
Lifecycls Thuice

Software Budget Multiplier

Environment Distribution owewse

Software Schedule Multiplilier 0.98753

Budyet Data Factor
Schedule Data Factor

SOURCE FILE: C.\SASETJO\BASELINE.FMS

3 Auy 1993 2:44:37 AM

Pro juct

base.ine.sas

PROJECT: baseline.sas
C5C1: cscil
[od: o CSC2

CsC: CSC1

CSCI: (CsCI2
CSC: CS5¢I2

CSCI: «sCIl
C5¢: €SC1)

Budget Schedula Value
1.800 1.4%0 Avionics
0.950 0.950 Cantralized
0.950 0.990 50 %
1.0%0 1.050 J
1.000 1.000 1
1.000 1.000 1
1.000 1.000 1
0.87% 1.000 FORTRAN, Pascal,Juvial,C
1.000 1.000 [V
1.000 1.000 DoLD~-5td-2167A
0.482917
1%.000
12.000
S/W PERCENT DATA
TYPE N/M/R STMT SLOC
- 4 175000
- 0 $Q000
- - 0 Joaoa
- - [¢] 2000y
- Q 80000
~ -] 87000
- - 0 45000
- - 0 45000

119

Summary of Staff Hours / Staff Montha / Houres per Line Code
based on Conditioned HOL Equivalents by Software Type

i
! Cond. HOL Hours
' Suftware Typs Staff Hours Starf Months Equivalents Per LGC
| Systaps 0.00 0.0) 0.00000
! Applications 128398.22 844.7 50000 1.56796
' Support 0.00 0.0 0 0.00000
! Budget = 128298.22 844.7 50000 1.56796
1 - - -
. Uata S5tatemants 0.an 0.0 0
| Systems RaqQts 20140.90 132.9%
i Systems Test 19301.69 i27.0
' Total 3udgat = 167:440.02 1104.2
: frmm e emmmamom e, o ——————— »

| => Hours par LOC is 3.35682 <

e ettt e o e 2t e o i e e e +

. 120

#ekars Sygtem Attributas Distribution twweww

System Complexity Title Budgat Schedule Complexity
! System Reguirements 1.000 1.000 Avarage
Sottware Requiraments 1.000 1.000 Average
Software Ducumentation l.020 1.010 Corplex
i Travel Requirenents 1.000 1.000 Average
| Man Interaction 1.020 1.010 Complex
Timing and Criticality 1.000 1.000 Average
| Sortwara Tastability 1.000 1.000 Average
\ | Hardwars Constraints 1.000 1.000 Avarage
| Hardwave Experieancs 1..000 1.000 Averaga
. Software Experienca 1.000 1.000 Averaga
i S5oftware iInterfaces 1.000 L.Q00 Avevrage
! Develupment Facilities 1.000 1.000 Averagae
! Developueant ve Host 5ys 1.000 1.000 Avarage
i Technology Inpects 1.000 1.000 Average
: COTS Saftwara 1.000 1.000 Average
E Development Team 1.000 1.000 Average
! tmbadded Developuent Sys 1.000 1.000 Average
B Softwara Development Tuols 1.000 1.000 Average
: Parsonnel Resources 1.000 1,000 Average
: Programming Languaye 1.000 1.000 Average
Ssoftware Systems udget Multiplier 1.04040
Software Systam3 :.chedule Multipliaer 1.02010

vanrrd Sygtem Attributas Distribution *eswssr

Intagration Complexity Title Factor Coplx Product Comple ity

S/Y Language Complexity 9.00 2.00 l8.00 Avaragae
| Modularity of Softwara 5.00 2.00 10.00 Average
i S/W Timing & Criticality 5.00 2.00 10.00 Average

Number of C5CI Intarfaces 7.00 2.00 14.00 Average
! Software Documentation 7.00 3.00 24.00 Complex
I Davelopment Facilitlies 4.00 2.00 8.00 Average
. Software Interfaces 6.00 2.00 12.00 Average
. Tasting Complexity 8.00 2.00 16.00 Average

Devalopmant Complexity 7.00 2.00 14.00 Avarage

Integration Experiaenca 6.00 2.00 12.00 Average

Intey. Daveloument Tools 5.00 2.00 12.00 Average
I Schedule Conatraints 8.00 2.00 16.00 Average
: Budget: Tncereas o % = 5.0 % Budqgat Value = 161,00

121

Summary of Staff Hours / Staff Months / Hours per Linae Coda
based on Conditioned HOL Equivalents vy Software Type

I Zond. HOL Hours
! Softwara Type Staff Hours Staff Months Equivalents Per LOC
! Systens 0.00 0.0 0 G.000¢0
Applicaticns 63410.69 417.2 26667 2.37790
Support 0.00 .0 0 0.900090
) s mmme ===
"' Budget = 63410.69 417.2 26567 2.37790
s
| Data Statemants 0.00 0.0 0
| Systuns Reqts 99456.78 65.4
Systens Test 9532.33 62.7
A mmmm—— i ——
| Total Budget = 82889.79 545.3
: A et v it % e L e o +
| -> Hours per LOC is 3.10837 <= |
fommsammaa - Bl et +

122

- WmFEImo .

. kwkekd System Attributes Distribution A#xwxxw

i
i
I
1
I
\ System Complexity Title Budget Scheduls Conplexity
|

System Requirements 1.000 1.000 Avarage
. Software Regquiraments 1.000 1.000 Average
Softwara Documentation 1.020 1.010 Complex
' Travel Requirements 1.000 1.000 Avaraga
| Man Intaraction 1.020 1.010 Complex
E Timing and Criticality 1.000 1.000 Averaga
! Software Tastability 1.000 1.000 Average
Hardware Constraints 1.000 1.000 Average
] Hardwara Experience 1.000 1.000 Average
: Software Experience 0.850 0.990 Simpla
l Software Intarfacas i.000 1.000 Average
; Daevelopmant Facilities 1.000 1.000 Average
H Development vs Host Sys 1.000 1.000 Average
Technology Impacts 1.000 i.000 Average
COTS Scrtware 1.000 1.000 Average
J Development Tean 1.000 1.000 Average
T Enbedded Develcpmant Sys 1.000 1.000 Average
;l Seoftware Developmant Tools 1.000 1,000 Average
I Personnal Resources 1.000 1.000 Average
1 Programming Language 1.020 1.010 Complex
Software Systems Budget Multiplier G,90203
! Suftware Systams Schedule Multiplier 1.02000

wkwuand System Attributes Distribution ##ww#wei

' Integration Complexity Title Factor Cmplx Product Complexity
5/W Language Complaxity 9.00 3.00 27.00 Comp lex
Modularity of Software 5.00 2.00 10.00 Average
: S/W Timing & Criticality 5,00 2.00 10.00 Average
' Numbar of CSCI Interfacas 7.00 2.00 14.00 Average
' Softwara Documentation 7.00 3.00 21.00 Complex
Devalopment Facilities 4.00 2.00 8.00 Average
. Software Interfaces 6.00 2.00 12.00 Average
. Testing Complexity 8.00 2.00 16,00 Average
Development Complaxity 7.00 2.90 14.00 Avarage
i Integration Expaeriencae 6.00 2.00 12.00 Avarage
1 Intag. Davelopment Tools 6,00 2.00 12.00 Avaraga
{ . Schedule Constraints - 8.00 2,00 16,00 Average
i Budget Increase % = 5.0 % Budget Valua = 172.00
I

o

Vel

IR ALY MW‘QAK

Summary of Staff Hours / Staff Months / Hours per Lina (uode

basad on Conditioned KOL Equivalents by Software Typea

Cond. HOL Heurs
Software Typa Staff Hours Staff Months Equivalents Per LOC
SysZans 0.00 0.0 (] ¢, 00000
Applicaticns 115558.40 760.3 45000 2.567%6
Support ¢. 90 Q9.0Q 0 0.001u0
Budget = 115558.40 764,32 45000 S.135796

Data Statements 0.00 0.0 a
Systens Regte 18126.81 119.2
Systams Test 17371.52 114.3
Total Budget = 151059.73 693.8

e - - ———————— e

| -> Hours per LOC is 3.35682 <=

) L 0 e e o it 7 o s om me 8 -

L5 %%MW&MM‘W

AN A4 LAY YU T

124

RS DA . i M\\hbﬂi\.hw vt lbads @ inibing

4511 4 T o 8 e MVHQ&.\-"\M"\'IU"Q Foraus e

b Ty

R R IR Y YR s

Lir ATaULE LALLM ER B by

*kx44¥ System Attributes Distribution #xaiax

hkkdx® System Attributes Distribution wdkkis

¥ System Complexity Title Budget Schedule Couwplexity
o System Requirements 1.000 1.000 Averagas
o . goftwaras Raquirements 1.000 1.000 Average
oo Software Documentation 1.020 1.010 Complex
'4m Trave: Requiremants 1.000 1.000 Average
ny Man Interaction 1.020 1.010 Complex
0 Timing and Criticality 1.000 1.000 Average
o Sofiware Testability 1.000 1.c00 Averaa
) Hardware Constraints 1.000 1.000 Average

[Hardware Experience 1.000 1.000 Average
& Software Experience 1.G00 1.000 Average

| Software Interfaces 1.000 1.000 Average
ol Devalopment Facilitias 1.000 1.000 Average
s Development vs Host Sys 1.000 1.000 Average

] Technology Impacts 1.000 1.000 Average
a COTS Software 1.000 1.000 Average

] Developnent Team 1.000 1.000 Average
N Embec.ded Devel spment Sys 1.000 1.000 Average

i Software Cevelopment Tools 1.000 1,000 Average

: Personnel Resourcas 1.000 1.000 Average

] Programming Language 1.000 1.000 Avarage

I

o Software Systems Budget Maltiplier 1.04040

l Software Systams Schedule Multiplier 1.020i10

|

!

!

Integration Complexity Title Factor Cmplx Product Complaxity

: S/W Language Coumplexity 2,00 2.90 18.00 Average
Modularity of Softwar : 5.00 2.00 10.00 Average

I S/W Timing & Criticality 5.00 2.00 10.00 Avarage

' Numbar of CSCI Interfacas 7.00 2.00 14.00 Average
l Software Documentation 7.00 3.00 21.00 Complex

’ Development Facilities 4.00 2.00 8.00 Average
\ Software Interfaces 6.00 2.00 1..00 Averaga

i Testing Complaexity 8.00 2.00 16.00 Averaga

: Development Complexity 7.00 2.00 14,00 Averaga
o Integration Expecience 6.00 2.00 12.00 Average
i Intey. Development Tools 6.00 2,00 12.00 Averaga

. . Schedula Constraints 8.00 2,00 16.00 Avarage

Budget Increase § = 5.0 % Budge*. Value = 163.00

MODEL INPUTS AND RESULTS FOR PRICE-S

|
|

DATE Sat 7/31/93

ITEM DESCRIPTORS
Platform 1.80

ITEM SCHEDULE
System Concaept Dats
System Dezign Review
Pre. Design Reviaw
Taust Readiness Reviaw
Physical Config Audit
Oper Test & Evaluation

COMPONENT 1 titled: CSC 1

DESCRIFTORS
Intarnal Intoy
Ytilization Fraction

SCHEDULE
Softwarm Spec. Raview
Critical Design Review
Functional Conflg Audit

LANGUAGE 1 DESCRIPTORS
Language Ada
Complaxity 1

Application 5.50 New Design

Application Categories
Usar Definad (APPL =
DATA S/R
online Comm
Realtime C&C
Interactiva
Mathematical
string Manip
Operating Systems

COMPONENT 2 titled: C5C 2

DESCRIPTORS
Intarnial integ
Utilization Fraction

SCHEDULE
Softvara Spec. Reviaw
Critical Design Keview
Functional Config Audit

LANGUAGE 1 DESCRIPTORS
Languaga Ada
Complexity 1

Application 5.50 New Dasign

Application Categorius

~== PRICE SOFITWARE MODEL ---
Acquisition Mode

TIME 3/%9 PM Project : Projectl
392148

Devt., Item w/comps

Mgut Complexity 1.00 External Integ 0.50

0 System Requirerents Review 0
0 Software Spec. Raview 894
0 Critical Design Feview 0
0 Functional Config Audit 0
0 Functional Qual Raviaw 0
Q
0.50 External Integ 0.50
0.4%0
394 Pra. Design Review 0
Q Test Readiness Reaview 0
V]
Source Code 30000 Non-exsecutable SLOC 0.00
1.00 Complexity 2 1.00 Productivicy Factor 8.00
1.00 New Cuila 1.00
Mix New Design New Code
%.50) 0.00 0.00 0.00
0.00 1.00 1.00
0.00 1.00 1.00
Q.00 ¢.00 Q0,00
0.00 1.00 1.00
0.00 1.00 .00
0.00 1.00 1.00
0.00 1.00 1.00
0.50 External Integ 0.50
0.%0
894 Pre. Desiyn Review 0
4] Tast Readiness Review 0
a
Source Code 20000 Non-exacutable SLOC 0.00
1.00 Complexity 2 1.00 Productivity Factor .00
1.00 New Coda 1.00
Mix Naw Design Nuw Code

127

~== PRICE SOFTWARE MODEL ---

Acquisition Mode .
DATE Sat 7/31/93 TIME 3/%9 PM Project : Projectl
192148
! CSCI 1 Davt. Item w/comps

| Costs in Verson Months

Design Pgming Data S/PM Q/A Config TOTAL

5ys cConcept 27.0 0.0 4.7 12.6 1.2 1.2 46.5

Sys/SW Reqt 33.7 0.0 5.8 15.7 1.5 1.3 58.1

. SW Raquirement 41.7 0.0 11.9 52.7 6.9 6.9 122.1
| Prelim Dasign 76.5 24.7 21.6 50.9 11.1 11.1 19%.0
| Detail Dasign 114.7 37.1 32.5 76.3 16,7 16,7 294 ©
o Code/Tast 17.4 136.7 23.3 28.5 30.5 30. . 287.0
. CSCI Test 0.0 48.5% 35.1 ig.1 la.) 38.2 268.)
o System Test 21.0 6.3 4.2 12.6 13.7 27.3 105.1
i Opar TE 1.1 7.8 5.2 7.8 8.9 9.4 52.1
! TOTAL 4J4.9 281.2 146.) 295.2 128.8 142.9 1429.5

g SCHEDULE INFORMATION

! Concept start rar 93» TRR Sep 96% (11.4)

. SRR wuul 93% (4.9) FCA Apr 97% (7.0}
. SO Nov 93% (3,2} PCA Jun 9/* (2.0)
; SSR Aug 94 (9.%) FQR Aug 97+ (2.0)
1 PDR Feb 95+ (6.4) OTE Jan 93+% (5.1)
- CDR Oct 95 { 7.2)

SUPPLEMENTAL INFCRMATION

Sourve Lin. of Code 50000
Source Line of Code/ Person Months 47.8)

~—== PRICE SOFTWAXRLE MODEL ~--
Acquigition Mode

Cs

mOZ>0

DATE Sat 7/31/95 TIME 4/02 PM Projecct Projectl
192148
CI 1 Davt. Itdm w/comps
Costs in Person Months
SENSITIVITY DATA
(PROFAC - COMPLEXITY)
COMPLEXITY CHANGE
- 0.50 0.0 + 0.50
: H H H
H CAST 1012.6 : cosT 15858.7 ¢ COST 2171.0
- 0.50 : H H H
H MONTHS 27.1 MONTHS 9.4 : MONTHS 94.7 .
: COST 909.4 COsT 1439.5.: CosT 1961.7 ¢
0.00 H ot :
i MONTHS 26,7 :. MONTHS 58.7.: MONTHS 93.5
; ; e ;;;; ———— ;---n---u----m------;
H COST 825.2 ¢ COST 1300.9 : COosT 1783.7 =
+ 0.%0 : : : H
: MONTHS 26.4 : MONTHS 58.0 MONTHS 92.1

124

T >

MCZ>P0

0.00

»=~ HPRICE SOFTWARE

DATE Sat 7/31/93

Coets in Parson Moaths

Acguisition Mode

TIME 4/06 PM

393148

SENSITIVITY DATA
(APPLICATION - SIZE)

S{ZE CHANGE

MODEL =~=--

Project

Davt.

Projectl

[Cau w/Cuaps

- 10.0% 0.9 + 10.0%

; COST 1251.8 ; COST 1404.0 ; CCuT 15%7.6
; MONTHS 16.0 ; MONTHS 58.2 ; MONTHGS 00.)
. - : -
©cosT 1a76.4 1. COST 1429.50: cost 1585.9
; MONTHS 56.4 ;: MONTHS 58.7:; MONTHS 00.8
; ;................. .;

CcosT 1297.1 ; cosT 145%4.9 ; [Wely § lel4.2
; MONTHS 56.9 ; MORTHS 89.1 ; MONTHS 61.3

130

- e

=== PRICE SOFTWARE MODEL ~--~-

I " Acquieirtion Mode
DATE Sat 7/31/93 TIME 4/06 PM Projeact : Prujectl
! 192148
. ' CSCI 2 Davelopment ltem
1
: ITEM DESCRIFPTORS
. Platfoxm 1.80 Mgmt Complexity 1.00 Cost 0.00
X Internal Intay 0.%0 External Intey 0.50 uUtilizatiun 0.50

' ITEM SCHEDULE

Systam Conuvapt Date u Syatew Heguiiements Review ¢}
Systun Deslyn Revieaw v Softvare Npec, Heview LX)
Pre. Dasign Review 0 Critical Duswign Review 0
Tast Readinans Review 0 Yunctional Contiy Audit 0
Phymsical Confiqg Audit 0 Functional Qual Review V]
, Opur Tast & Evaluation 0
v LANGUAGE 1 GESCRIPTORS
. Language Assembly sSuurce Code 800YQ Non-exwcutab:a SLOC 0,00
Complexity 1 0.80 Complexity 1 1.00 Productivity Bactor %.00
Application 3.350 New Desiyn 1.00 Naw Code 1.00
Application Catequries Mix Nuw Oenlyn Naw Code
f Usel Defined (APPL = 6.42) Ny u.00 3.00
v DATA 3/R Q.00 V.00 Q.u0
online Comm 0.0 0.00 0.00
Realtime C&C Q.90 3,00 2.00
Interactive 0.00 6.0 02.00
Mathumatical 0.06 0.00 0.00
strin Manlp 0.00 .00 0.00
upargting Systems 0.00 0.00 0.4v

~-= PRICE SOITWARE MODEL ---
Acguisition Mode

DATE sat 7/31/9) TIME 4/06 PM Project : Prujectl
192148

CsCY 2 Davalopmant Itam -

Coets in Persan Montha

: Dasign Pgming Data S/PM Q/A Config TOTAL
: Sya Caoncapt 10.3 0.0 1.8 4.8 .4 0.4 17.8
' Sys/SW Raqt 12.9 0.0 1.2 5.0 0.6 0.6 22.2
SW Requirement 1b.8 v.0 4.8 21.0 2.4 .4 47.4
T Prelim Deasign 2%.7 9.3 6.6 16.9 3.3 1.3 65%.0
| Detail Daxign 8.0 13.9 9.9 1%.3 4.9 4.9 97.9%
: Coda/Test 10,1 48.4 6.7 8.4 8.9 8.2 91.4
CSCI Test 2.1 1.4 15.3% 17.8 6.1 16.1 114.8
; Systeu Tast 8.0 10.0 .5 4.0 5.2 10.4 40.1
. Oper TE %.0 3.0 2.0 1.0 J.4 1.6 20.0
TOTAL 159.4 10%.9 511 108.0 44,2 50. 6 %20.2
! SCHEDULE INFORMATION
concept Start Nov 93» THR Seap 9% (6.0)
| SRR Dec 9J* (2.9) FCA Fab 96* (4.9%)
[SDR Fab 24* (1.9) PCA Mar 96+ { 1.4)
SSR Aug 94 (%,8) FQR Apt 96% 1.4)
: polls Nov 94+ (J.4) OTE Aug %6+ (J.4)
: CDR Mar 95+% (3.7)
SUPPLEMENTAL INFORMATION
! Source Lines of Code 840000
sSource Lines of Coda/ Pesrsoun Montha 214.64

1 132

=«~ PRICE SOFTWARE MODEL -~~~
Acquisition Mode

DATE Sat 7/31/%) TIME 4/07 PM Project : Prcijectl
192148

. ¢ser 2 Deavalopment Ytem

! Costa in Person Months

| SENSITIVITY DATA
! (PROFAC - COMPLEXITY)

COMPLEXITY CHANGE

. - 0.5¢ 0.0 + 0.50
| : H
: COST 308.7 : COosT %75.2 : COsT 841.4 :
P - 0.5 : H : :
R ¢ MONTHS 11.3 : MONTHS 34,5 : MONTHS 60.5

0 : : :

F - H . " :
A : PP Cherreceennad H
! C H COST 277.9 . COST 530.2.¢ COsT 760.5
: 0.00 : H .t :
C t MONTHS 11.2 :. MONTHS 34.1.: MONTHS 59.7 :
H H P :
A Bl L ol : H
\ N : : H H
G : COST 252.1 : cOsT 474.4 CCST 697.4 :
R E + 0.50 : ¢ H H

MONTHS 11.0 : MONTHS 33.7 : MONTHS 99.0

cs

[l B4

RQZ>P>IN

DATE sat 7/11/93

we=w PRI'E SOFTWARE MODEL ---

Acquisition Mode

TIME 4/08 PM

Project : Projectl

3192148
CI 2 Davelopment
Costs in Person Months
SENGLTIVITY DATA
(APPLICATION ~ SIZE)
SIZE CHANGE
- 10.0% 0.0 + 10.0%

: COosT 455.8 COST 512.3 COoSsT $67.3

- 0.10 : : H
¢ MONTHS 12.5 : MONTHS 33.8 : MONTHS 35.0
H cosT 463.7 COST 520.2.. COsT 577.2

0.00 HN S
¢ MONTHS 12.8 :. MONTHS J4.1.: MONTHS 15,2
: COSsT 471,86 : COST 529.1 COSsT 587.1

+ 0.0 : H H
: MONTHS 33.0 MONTHS 34.4 : MONTHS 35.6

134

Item

|
|

=== PRICE SOFTWARE MODEL ---
Acquisition Mode

DATE Sat 7/31/93 TIME 4/08 PK Project : Projectl
392148
CSCI 3 Daevalopnent. Item
ITEM DESCRIPTORS
Platform 1.80 Mgmt Complexity 1.00 Cost 0.00
Internal Integ 0.50 Extarnal Intsg 0.50 Utilization 0.50
ITEM SCHEDULE
System Concept Data 0 Systow Ragquiremants Review 0
Systam Design Review V] Softwarm Speac. Review 894
Pre. Design Review 0 Critical Desiygn Raeview 0
Test Readiness Review 0 Functional Config Audit 0
Physical Config Audit 0 Functional Qual Reviaw 0
Uper Test & FEvaluation 0
LANGUAGE 1 DESCRIPTCRS
Language Ada Source Code 45000 Non-exacutabla SLOC 0.00
Complaexity 1 1.00 Complaexity 2 1.00 Productivity Factor 5.00
Application 5.50 New Dasign 1.00 New Code 1.00
Application Catagories Mix New Dasign Naw Code
User Definad (APPL = 5.50) 1.00 1.00 1.00
DATA S/R 0.00 0.00 0.00
Oonlina Comn 0.00 0.00 0.00
Realtime C&C 0.00 0.00 0.00
Interaciive 0.00 0.00 0.00
Mathematical 0.00 0.00 0.00
string Manip 0.00 0.00 0.00

Operating Systeus 0.00 0.00 0.00

.! === PRICE SOFTWARE MODEL -~-
|

Acquisition Mode L
DATE Sat 7/31/93 TIME 4/08 PM Project : Projectl
! 392148 :
R
CSCI 3 Davelopment Item ’
Costa in Person Months

| . . -
& Design Pgming Data 5/eM Q/A Config TOTAL

Sys Concapt 24.5 0.0 4.2 11.4 L.1 1.1 42.3

Sys/sSW Reqt 30.86 0.0 5.3 14.3 1.3 1,3 52.8
i SW Requiresment 7.3 0.0 12.3 47.1 6,1 6.1 108.9

Prelim Design §3.1 20.5 19.1 42.9 9.8 9.5 165.1
‘ Detail Design 94,7 3o.s 28.5 64.4 14,7 14,7 247.7

Codn/Tast 22.1 102.0 15.8 19.1 21,8 21.5 a01.9
| CSCI Tast 63.1 44.0 4.1 35,6 6.6 5.6 250.1
l Systam Tast 19.1 231.9 3.8 11.5 12.4 24.8 95.5

Opur TE 11.9 7.1 4.8 7.1 8.3 8.6 47.5
E TOTAL 366.6 228.2 127.9 253.3 211.4 124.3 1211.8
i SCHEDULE INFORMATION
: Concept Start Apr 93* TRR Jun 96+ { 9.2)

SRR Aug 937 (4.7) FCA Jan 97+ (6.7)
| SDR Nov 93+ (3.1) PCA Mar 97+ (2.0)
| S5R Aug %4 (9.1) FQR May 97+ (2.p)
. PDR Fab 952 (6.2) OLE Oct 37w ¢ 4.9)
! COR Sap 95* (6.9)
| .
: SUPPLEMENTAL INFORMATION
' Source Lines of oda 45000
Source Lines of ¢ode/ Person Months 52.03

136

=w= PRICE SOFTWARE MODEL ~--
’ Acquisition Mode

i

I

I

]

|

! DATE Sat 7/31/92 TIME 4/03 2M Project : Projactl
| 392143

’ cscI 3 Devalopment Item
I

|

I

|

I

Costs in Person Honths

]
SENSITIVITY DATA i
. {PROFAC ~ COMPLEXITY)
i .
: COMPLEXITY CHANGE %
i - 0.50 0.0 + 0.50
I : COST 819.1 : COST 1343.2 COST 1878.9 :
v ‘ P - 0.50 : : H :
. | R H MONTHS 25.0 : MONTHS 55.4 ¢ MONTHS 8.8 :
H (o} H : : H
l ¢ : X : s mmsem
-| A : P H
| c H COST 736.4 :. COST 1211.8.: COST 1698.9
! 0.00 : HI o3 :
| [od t MONTHS . 24.6 :. MONTHS 54,7.: MONTHS 87.7 ¢
H H o eiossssascarsannaaet H
- A : : : :
: N -2 H : :
! G H CosT 668.5 COST 1103.4 : cOoSsT 1549.7
E + 0.50 : : H :
: : MONTHS 24.3 : MONTHS $4.1 : MONTHS 86.7 :
|
i
|
|
|
! |
|
N
N
|
|
i
|
| ,
, 137

-~~ PRICE SOFYWARE WODEL
pequisition Hede

LRYVE Sat 7/31/93 TIMED §/13 PM Pruject : "rojoectl
Iv214e
CSCI 3 Darg loptant
, custy 1a Person dooths
¥
B SENSITIVITY DATA
: (APPLICATION -~ 51I2.%)
4 SIZE CHANGE
A}
s - 10.0% 0.0 + 10.0%
i : L N W AN S - ul
1 M : .
i : COST 1060.5 : CCST 1190.1 : COST 1:420.9
- A~ 0.10 : : . :
a P : MONTHS 52.2 MONTHS $4.3 @ MONTHS 56.3
- v :
;‘}: L I ARSI OTEET MV R A D T R A S R M MU T Y O A D TS SR LK W S AT A
o : et Che sensi .
B c : QosT 1073.9 ¢, COST 1211.68.: COsT 1345.0
H a.00 N ol :
A » MONTHS 52.6 :. PONTHS 54.7.: MOWTHS 56.7
. N : HESP P T I H
G 7 wna - : P 1AM WIEY R T WO R R O4 W
| E : : : :
hd H CcosT 1099.2 : COsT 1233.6 COST 1)69.2
. + 0.10 12 : H :
: MONTHS 53.0 : MONTHS 5%.1 : MONTHS 7.1
< : : : H
3 : P Pwem H :
il
X
Al
E
4
:1

P

SERTLAR

LTI 8 A S > > 2

N e s

135

Ftom

3 - i
i

~ i
A
. [
H i

! 5
~4

MOGEL INPUTS AND RESULTS FOR SEER-SEM

139

.

SZER-SEM (TM) Scftware Schedulae, Cost & Risk Estimation Version 3.21
Project : Test Case 7/31/93
PROJECY : Test Casa 4:20:22 PM

Quick Estimate

Effort Months 2,366.17 -
Baga Year Cost 33,602.42K
Phases lncluded REQ + FSI + STE

USAF F49650-~92-C0094 GOV'T USE ONLY: USH;Y EMPLOYEE USE ONLY
Licensa expiras: 373171994 [}
Copyright(C) 1988-93 Galaorath Asscecaiates, Inc. All Rights Peserved. Page 1

SEZER-SEM (M) Software Schedule, Cost % Risk Estimation Version 3.21

Project : Test Case 7/31/93
PROJECT : Tast Case 4:20:22 bPM
3
= Activity
Schedule Person Person
. Activity Manths Months Hours Cost
’ ! Sysutem Concept 0.00 0.00 Q [+}

i Cumulative 0.00 0.00 Q 0

1) :

I Systam Requirements Design 0.00 33.60 5,107 477,058
| Cumulative 0.00 33.60 5,107 477,0%8
‘ﬁ 5/¥ Requirements Analysis 0.00 98.39 14,986 1,400,019
“l Cumulative 0.00 132.19 20,093 1,877,078

| Preliminary Design 0.00 203.43 30,921 2,888,640
w Cumulative 0.00 335.61 51,013 4,765,717
. Detailed Deslign 0.00 341.19 51,861 4,844,924

) Cumulative 0.00 676.81 102,874 9,610,641

r

i Code & CSU Taest V.00 534.22 81,201 7,585,881

: Cunulative 0.00 1,211.02 184,075 17,196,522

CSC Integrate & Test 0.00 537.83 96,951 9,087,233

Cumulative 0.00 1,8483.86 281,026 26,283,75¢

CSCI Tast 0.00 73.34 11,148 1,041,475

o ! Ccumulativa 0.00 1,922.20 232,174 27,295,230
ot System Integrate Thru OT&E 0.00 444.17 67,514 6,307,189
Cumulative 0.00 2,366.37 359,688 33,602,419

Maintenanca / Op Support 0.00 0.00 0 0

Cumulative 0.00 2,366.37 359,688 31,602,419

USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License axpires: 13/31/1994
Copyright(C) 1938-93 Galorath Associates, Inc. All Rights Reserved. Page 2

141

] I

i SZER-SEM (TM) Software Schedule, Cost & Risk Estipation Version 3.21
: Project : Test Caae 7/31/93
N cscr : ¢scr 1 4:20:38 PM

Quick Estimate

Schadule Months 41.29 .
i Effort Months 719.41
i Basa Year Cost 10,215.59K

Conatraint MIN TIMZ

Phasas Includad REQ + FSI + STE

i USAF F49650-92-C0004 <OV'T USE NNLY: USAF EMPILOYEE USE ONLY
. Licinue expires: 3/31/1994
Copyright (C) 1988-93 Galorath Associates, Inc. All Rights Raeservad. Page 1 .

142

SEER-SEM (TM) Software Schedule, Cost & Risk Eztimation Version 3.21

i Project : Test Case

7/31/92
GSCl : C3CI 1 4:20:38 M
\ ! Inputs
| Least lL.ikely Most
1 - eeviwman memm e - - -
! - + EFFECTIVE LINES 50,000 50,000 %0,000
| - New Lines of Codae S0, 000 50,000 50,000
i + PRE-EXISTS, NOT DESIGNED FOR REUSE [} 0 0
! = Pre-axisting lines of code 0 0 0
| ~ Lines to be deletad in pre-axaty V] [4] 4]
I - Redesign required 0.00% 0.00% 0.00%
! - Raimplemantation required 0.00% 0.00% 0.00%
- Retaest 1aquired 0.00¢% 0.00% 0.00%
: + PRUE=-EXISTS, DESLGNED FOR REUSE 0 0 o]
' - COMPLEXITY VHi. - VHI VHi+
- + PERSONNEL CAPABILITIES & EXPERIPNCE Low- Nom Hi~
: - Analyst Capabilities Low Nom i
. ~ Analyst's Application Experience Nom- Nom Nom+
! - Programmer Capabilities Low Nem Hi
! - Programmer's Language Experienca Low- Nom Hi
‘ - Host Devalopment 5ystem Experience Low-~ Nom Hi
- Targat System Exparience Low- Nom Hi
4 - Practices & Methods Expariencae Low- Nom Hi
- + DFVELOPMENT SUPPORT ENVIRONMENT Low+ Nom ¥om
- Modern Development Practices Use Nom~ om Nom+
- Automated Tools Use Low Nom Nom
‘ = Logon thru Hardcopy Turnarsund Vie Low+ Hi
! - Terminal Response Time Low- Hi- Hi
L - Multiple Site Development Noa Nom Nom
~ Rasource Dedication Non Nom Nom
' - Resource and Support Location Nom Nom Nom
[- Host System Volatility Nom Nom Nom
' ~- Practices & Methods Volatility Nom Nom Nom
; + PRODUCT DEVELOPMENT REQUIREMENTS Nom Nom Hi
! - Reguirements Volatility (Change) Nom Nom Hi
: - Specification Level - Reliability Nom Nor Hi
- Tast Leavel Nom Nom Hi
- Quality Assurance Level Nom Nom Hi
- Rehost from Developmant to Targaet Nom Hi VHi+
+ PRODUCT REUSABILITY REQUIREMENTS
. - Reusability Level Required Nom Nou Now
: ~ Software Impacted by Reusa 0.00% 0.00% 0.00%
e + DEVELOPMENT ENVIRONMENT COMPLEXITY Nom- Nom Noua+
! -~ Language Type (complexity) Nom Nom VHi
i ~ Host Develop. System Complaxity Nom Nom Nom
- Application Class Complaxity Nom~ Nom Nom+
; - Practicas & Procedures Complaxity Nom Nom Nom
. i + TARGET ENVIRONMENT Nani Nom+ Hi-
- Special Display Requirements Hi- Hi VHi
! - Memory Constraints Hi- Hi Hi+
! ~ Time Constraints Nom Now+ Hi-
I - Real Time Code Nom Now+ Hi
! ~ Target System Complexity Nom Nom Nom
' - Target Systum Volatility Hi- Hi Hi+
. - Security Requirements Nom Nom Nom
. + SCHEDULE
USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License expires: 3/31/1994
. Copyrigh:z(C) 1988-93 Galorath Associates, Inc. All Rights Reservead. Page 2
i
143

SEBR-SEM (TM) Softwars Schedule, Cost & Risk Estimation Version 3.21

Projact : Taest Case 7731793
CSCI ¢ CSCI 1 4:20:38 PM)
Inputs
Least Likely Most
- Raquiraed Schedule (Calendar Mos) 0.00
- Start Data for Requivements Phase 7/31/93
- Base Monetary Year 1993
+ STAFFING
~ Maximum Staffing Rate Per Year 0.0
- Maximum Total staff Available 0.0
- Maximum Effort Available (PMos) 0.00
- Forced Overstaffing Nom
- Probability £0.00%
+ S/W REQUTREMENTS ANALYS1S
- Raquiremants Completa @ Contract Low
- Raquirements Dufinition Formality Nom Nom Hi.
- Raquirements Eftort Aftex Baseline YES
+ S/W TO 5/W INTEGRATION
= ¢5CIs Concurrently Inftegrating 2
- Integration Organizations Involved Q
- External Interfaces Among CSCIs o]
4+ S/W TO H/W INTEGRATION
- Hardwaxe Integration Laval Nom Nom Nom
- Unique Hardware Interfaces 0
+ OTHER ADD-ONS
+ SOFTWARE MAINTENANCE
- Years of Maintenancas 0
~ Separate Sitaes 1
- Haintenanca Growth Over Life 23.00%
- Personnel Differences Low Nom- Nom
- Development Environment Differences Nom Nom Nom+
- Annual Changs Rate 11.00%
- Maintain Total System YES
+ ESTIMATE TO COMPLETE
+ AVERAGE PERSONNEL COSTS 14,200
USBAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
Licensa axpires: 3/31/1994 .
Copyright (C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page 3

144

SEER-SEM (TM) Softwara Schedule, Cost & Risk Estimation

Version 3.21

Projact : Test Case 7/31/93
CHCI t CSCI 1 4:20:33 PM
Activity
Schedule Person Person
Activity Months Months Hours Cost:
Systam Concept 0.00 a.00 0 0
Cumulative 0,00 0.00 0 [¢]
System Requirements Daesign 2.72 10.321 1,5%2 145,032
Cunulative 11/21/93 3.72 10.21 1,5%2 145,032
S/W Requirements Analysis 4.38 29.97 4,556 425,625
cumulative 4/02/94 g.10 40.19 6,108 570,657
Preliminary Design 5.61 61.84 9,400 878,185
Cumulative 9/21/94 13.71 102.03 15,509 1,448,842
Detailaed Design 6.45 103.73 15,766 1,472,922
Cumulativae 4/04/95 20.16 205.76 31,275 2,921,764
Code & CSU Tast 7.97 162.41 24,686 2,306,210
Cumulative 11/21/95 27.73 368.17 55,961 5,227,974
CSC Integrate & Tast 7.57 193.91 29,474 2,753,521
Cumulative 7/10/9%6 35.10 562.08 85,436 7,981,495
CSCI Tast 0.84 22.30 3,389 316,622
Cumulative B/04/96 36.14 584.37 88,825 8,298,117
System Integrate Thru OT&E 5.15 135.03 20,525 1,917,470
Cumulative 1/68/97 41.29 718.41 109,350 10,215, 588
Maintenance / Op Support 0.00 0.00 [} [s]
Cunulativa 1/08/97 41.29 719.41 109,350 10,215,588

USAF F49650-92-C0004 GOV'T USE ONLY: USAF LiPLOYEE USE ONLY

Licensa expires: 3/31/199¢

Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Feserved. Page

145

SEER-SEM {TM) Software Schedule, Cost & Risk fetimation Version 3.21
Project : Test Case

7/31/93

CSCI : CSCI 2 4:20:51 PM
)
Quick Estinmata

Schadule HMonths 46.23 .
Effort Months 1,012.99
Base Year Cost 14,384 .51K
constraint MIN TIME
Phases Included REQ + FSI + STE

USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
Licensa expires: 3/31/1994

Copyrigh..(C) 1088=H3 Galorath Associatas, Inc. All Rights Raszerved. Page 1)

I SEER-SEM (TM) Software Schedule, Cost & Risk Estimation Version 3.21

Project : Test Case 7/31/93
CSCT : CGSCI 2 4:20:51 PM
)
: Inputs
‘ Least Likely Most
b + EFFECTIVE LINES 0,000 80,000 80,000
; - Naw Lines of Code 80,000 80,000 80,000
i + PRE-EXISTS, NOT DESIGNED FOR REUSE 0 Q Q
| - Pre—existing lines of code 0 0 0
! - Lines to be deleted in pra-eaxsty 0 0 0
| - Redesign raquired 5.00% 10.00% 40.00%
: - Reimplemaentation required 1.00% 5.00% 20.00%
-~ Ratast required 10.00% 40.00% 100.00%
+ PRE~EXISTS, DESIGNED FOR REUSE o] 0 0
- COMPLEXITY VHi- VHi VHi+
. + PERSONNEL CAPABILITIES & EXPERIENCE Nom- Hi- Hi+
i ~ Analyst Capabilities Low Nom Hi
- Analyst's Application Experience Nom- Nom Nom+
- Programmer Capabilitias Nom Hi VHi
: - Programmer's language EXxperience Hi VHi EHi
M - Host Developmant System Experiance Nom Hi VHi
! - Target System Experienca Nom Hi Hi
i - Practicas & Methods Experience Nom Hi VHi
! + DEVELOPMENT SUPPORT ENVIRONMENT Low+ Nom Nom
| - Modern Daevelopment Practicas Use Nom-~ Nom Nom+
- Automataed Tools Use Low Nom Nom
- Logon thru Hardcopy Turnaround VLo Law+ Hi
- Terminal. Rasponse Time Law- Hi~- Hi.
- Multiple Site Development Hom Nom Nom
~ Resource Dadication Nou Nom Nom
- Resource and Support Location Nom Now Nom
- Hogt System Volatility Nom Nom Nom
! ~ Practicas & Mothods Volatility Nom Nom Nom
o + PRODUCT DEVELOPMENT REQUIREMENTS Nom Nom Hi
| - Requirements Volatility (Change) Non Nom Hi
- Specification Level - Raeljability Nom Nom Hi
- Tagt Lavel Noa Nom Hi
; - Quality Assurance Level Nom Nom Hi
i - Rehost from Development to Target Non Hi VHi+
v + PRODUCT REUSANMILITY REQUIREMENTS
i - Reusability Leval Required Nom Nom Nom
i ~ Software Impacted by Reuse 0.00% 0.00% 0.00%
| + DEVELOPMENT ENVIRONMENT COMFLEXITY Nom Nom Nom+
! - Language Type (complexity) Hi Hi VHi
'l - Host Develop. Systam Complexity Nom Nom Now
. ~ Application Class Complexity Nom- Nom Nom+
! ~ Practices & Procedures Complexity Nom Nom Nom
. + TARGET UENVIRONMENT Non Nom+ Hi-
I - Special Display Regquirements Hi- Hi VHi
| ~ Mamory constraints Hi- Hi Hi+
' - Tims Constraints Nom Nom+ Hi-
] - Real Time Code Nom Nom+ Hi
i - Target System Complexity Nom Nom Nom
I - Target System Volatility Hi- Hi Hi+
- Security Requirements Nom Nom Nom
+ SCHEDULE

: USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE CNLY
: License expiraes: 3/31/1994
[Copyright(C) 1988-93 Galorath Asgociates, Inc. All Rights Reserved. Page 2

147

SEER-SEM (TM) Software Schedule, Cost & Risk Estimation varsion 3.21

USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY

Project : Test Casae 7/31/93
Cscr : CSCI 2 4:20:51 PM \
Inputs
: Least Likely Most
| -
: -~ Required Schedule (Calaadar Mos) 0.00
~ Start Date for Requirements FPhase 7/31/93
~ Basa Monetary Year 1993
STAFFING
! ~ Maximum Starfing Rate Per Year 0.0
' ~ Maximum Total Staff Availablae 0.0
' - Maximum Effort Available (PMos) 0.00
) - Furced Qvarstaffing Nom
i Probability 50.00%
$/W REQUIREMENTS ANALYSIS
-~ Requirements Complete @ Contract Low
- Raequirements Definition Formality Nom Nom Hi
. ~ Requirements Effort After Basaline YES
! S/W TQO $/W INTEGHATION
l - CSCIs Concurrently Integrating 2
| - Integration Organizations Involved 0
- External Interfarcas Among CSCIs 0
, 5/W TO H/W INTEGRATION
i - Hardware Integration Leval Non Nom Nom
‘ - Unigque Hardware Interfaces 0
. OTHER ADD~-ONS
SOFTWARE MAINTENANCE
. - Years of Maintenance [+}
ol - Separate Sites 1
! - Maintenance Growth Over Life 23.00%
! -~ Personnel Differancas Low Nom~ Nom
= Development Environmant Differaences Nom Nom Nom+
- Annual Change Rats 11.00%
| - Maintain Total System YES
ESTIMATE TO COMPLETE
AVERAGE PERSONNEL COSTS 14,200

Licensa expires:

3/31/199%4

Copyright (C) 1988-93 Galorath Associates, Inc. All Rights Resarvad, Page 3

SEER-SEM (TM) Softwara S5chedule, Cost & Risk Estimation Varsion 3.21

! . Project : Test Case 7/31/93
csex : CSCT 2 4:20:51 PM
! Activity
| Schedule Parson Person
i Activity Months Months Hours Cost
! System Concapt 0.00 0.00 0 0
7 Cumulative 0.00 0.G¢0 0 0
: Systom Requiraments Daesign 4.17 14.38 2,186 204,219
Cumulative 12/05/93 4.17 14.38 2,186 204,219
) S/W Requirements Analysis 4.91 42.21 6,415 599,320
g Cumulativae 5/03/94 9.07 56.59 8,601 803,539
| Preliminary Design 6.29 87.08 13,237 1,236,568
| Cumulative 11/10/94 15.36 143.67 21,838 2,040,107
! Detailed Design 7.23 146.06 22,201 2,074,013
! Cumulative 6/17/95 22.59 289.73 44,038 4,114,120
i Code & CSU Test 8.49 228.69 34,760 3,247,362
i Cumulative 3/04/96 31.08 51%.41 78,799 7,361,482
“I CSC Integrate & Test 8.49 273.04 41,503 3,877,218
: Cumulative 11/17/96 39.57 791.46 120,302 11,238,699
1 CSCI Test 0.94 31.40 4,772 445,834
. Cumulative 12/16/96 40.51 822.85 125,074 11,684,534
System Integrate Thru OTLE 5.77 190.14 28,901 2,699,979
Cunulative 6/08/97 46.28 1,012.99 153,975 14,384,513
; Maintenance / Op Support 0.00 0.00 0 0
| Cumulative 6/08/97 46.28 1,012.99 153,975 14,384,513

, USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
i License expires: 3/31/1994
. Copyright(C) 1983-93 Galorath Associatas, Inc. All Rights Raserved. Page 4

SEER-SEM (TM) Software Schedule, Cost & Risk Estimation

Varsion 3.21
Project : Test Case 7/31/93
CSCI : CSCI 3 4:21:04 PM

Quick Estimate

Schedula Months 39.59 .
i Effort Months 633.97
i Basga Year Cost 9,002.32K
Constraint MIN TIME
Phases Included REQ + FSI + STE

L ima

USAI" F49650-92-C0C04 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License expires: 3/31/1994

Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Ressrved, Page 1

| o

SEER-SEM (TM) Software Schedule, Cost & Risk Estimation vVersion 3.21

Project : Test Case 7/31/93
CSCI : CSCI 3 4:21:04 PM
Inputs
| l.east Likely Most
! EFFECTIVE LINES 45,000 45,000 45,000
\ ~ New Lines of Cods 45,0Q0 45,000 45,000
; + PRE-EXISTS, NOT DESIGNED FOR REUSE 0 [o] [V}
; - Pra-existing lines af code [} o] [+]
‘ - Lines to be deleted in pre-exsty 0 0 g
. - Redesign required 5.00% 10.00% 4G.00%
. - Reimplementation reguired 1.00% 5.00% 20.00%
! - Retast required 10.00% 40.00% 100.00%
: + PRE=-EXISTS, DESIGNED FOR REUSE Q 0 0
i COMPLEXITY VHi~- VHi VHi+
i PERSONNEL CAPABILITIES & EXPERIENCE Low=- Nom Hi-
i - Analyst Capabilities Low Nom Hi
! - Analyst's Application Experience Nom-— Nom Nom+
i - Programmer Capabilities Low Nom Hi
.| - Programmer's Language Experience Low- Nor Hi
i - Host Development System Experience Low- Nonm Hi
- Targat Systeu Experirnca Low~ NMom Hi
i -~ Practices & Mathods Exparience Low= Nom Hi
DEVELOPMENT SUPPORT ENVIRONMENT Low+ Nom Now
I - Modern Development Practices Usa Nom- Nom Nom+
< - Automated Tools Usa Low Nom Nom
- Logon thru Hardcopy Turnaround VLo Low+ Hi
1 - Terminal Response Tiwe Low— Hi~- Hi
! - Multiple Site Developmant Nom Nom Nom
‘ -~ Rasource Dadication Nom Now Nom
I - Resource and Support Location Nom Hom Nouw
| - Host System Volatility Nom Non Now
| - Practices & Methods Volatility Nom Num Nom
| PRODUCT DEVELOPMENT REQUIREMENTS Noem Nou Hi
! ~ Requirements Volatility (Changae) Nom Nom Hi
\ - Specification Level - Reliability Nom Nom Hi
‘ - Tast Lavel Now tom Hi.
‘ - Quality Assuranca Level Nom Hon Hi
i - Rehost from Development to Tarqet Now Hi VHi+
. PRODUCT REUSABILITY REQUIREMENTS
\ - Reusability Laevel Raquired Nom Nom Nom
| - Software Impacted by Rause 0.00% u.00% 0.00%
DEVELOPMENT ENVIRONMENT COMPLEXITY Now- Nom Nom+
- Language Type (coaplexity) Non Nom VHi
i - Host Devalop. System Coumplexity Nowm Noun Nom
| - Application Class Complexity Nom-— Nom Non+
N - Practices & Proceduras Complexity Now Now Nom
\ TARGET ENVIRONMENT Nom Hom+ Hi-
| - Spacial Lisplay Reguirsmsits ii- ni He
. - Memory cConstraints Hi- Hi Hit+
} - Time Constraints Nom Now+ Hi-
: -~ Real Time Code Nom Now+ Hi
- Target System Complexity Nom Noa Nom
| - Target Systam Volatility Hi- Hi Hi+
~ Sacurity Requirements Nom Nom Nom
SCHEDULE
USAF F43650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License axplres: 3/31/199%4
Copyright{C) 19§8-93 Galorath Assoclates, Inc. All Rights Ressrved. Page 2

$ZER~SEM (TM) Software Schadule, Cust & Risk Estimation

Version 3.21

Project : Test Case 7/31/93
CSCI ¢ CSCI 3 4:21:04 PM
Inputs
Least Likely Most
~ Requiraed Schedula (Calendar Mos) ¢.co
~ Start Date for Requirements Phase 7/31/93
~ Base Monatary Year 1993
+ STAFFING
- Maxjimum Staffing Ratae Par Yeay 0.0
~ Maximum Total Staff Availabla 0.0
- Maximum Effort Avallaple (PMos) 0.00
- Forced Overstaffing Nom
- Probability 50.00%
i+ S/W REQUIREMENTS ANALYSIS
- Regquirements Complete @ Contract Low
- Requirenents Definition Formality Nom Nom Hi
- Requiraments Effort After Baseline YES
+ S/W TC 3/W INTEGRATION
~ ¢SCIs concurrently Integrating 2
- Integration Organizations Involved [s}
- Extarnal Interfaces Among CSCIs 0
+ S5/W TO H/W INTEGRATION
~ Hardware Integration Level Nom No1 Non
~ Unigque Hardware Intarfaces 0
+ OTHER ADD~ONS
+ SOFTWARE MAINTENANCE
- Years of Mainternancae 0
- Separate Sites . 1
- Maintenanca 5rowth Over Life 23.00%
-~ Parsonnel 0ifferences Low Nom- Nom
~ Developmant Environment Differences Nom Nom Noz+
- Annual Change Rata 11.00%
- KMain i1in Total System YES
+ ES7'IMATE TO COMPLYTE
+ AVERAGE PERSONNEL COSTS 14,200
USAF F49650-92-C0004 GUV'T USE ONLY: USAF EMPLOYFE USE ONLY
Licensa expireas: 13/31/1994
Copyriyht(C) 1988-93 Galorach Associataes, Inc. All Rights Resarved. Faye 3

o ARl S AP 0 i e s e

SCER--SEM (TM) Software Schedule, Cost & Risk Estimation Version 3.21

i ! Project : Test Case T/31/93
.i i Ccs5CI 3 C5CL 3 4:21:G4 PM
i Activity
e, Schadule Parson Person
- Activity Months Months Hours Cost
Systam Concept 0.00 0.00 0 Q
. Cumulative 0.00 .00 [+] [+]
- Sy 1 Raquirements Design 1.%6 9.00 1,368 127 8Q7
' cumulative 11/16/93 3.56 9.00 1,354 127,807
L S5/W Requirements Analysis 4.20 2€.41 4,015 375,079
1 Cumnlative /25794 7.76 35.41 5,383 502,882
| Preliminary Daesign 5.38 54.50 8,284 773,886
Cumulative 9/04/94 13.14 89.91 13,667 1,276,768
& Detailed Design 6.18 91.41 13,894 1,297,938
: Cumulative 3/12/95 19.32 181.32 27,561 2,574,757
O Code & CSU Tust 7.26 143.12 21,754 2,032,310
R ¢ ulative 10/14,/95 26.58 324.44 49,315 4,607,066
Co C3C Integrate & Taest 7.26 170.38 25,974 2,426,495
| Cunulative 5/46/96 33.84 435,32 75,289 7,033,562
v CSCI Test 0.81 19.65 1,948 279,018
-’w cumuiative 6/19/9¢ 34.65 514.97 78,275 7,312,579
Syetem Integrata Thru OT&E 4.94 119.C0 18,087 1,639,739
Cumalative 11/17/96 1%.59 6332.97 96,363 9,002,318
f Maintenance / Op Lupport 0.00 0.00 0 0
Cumulative 1/17/9c 39.59 6331.9%7 96,363 9,002,313

USAF F496%0-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE 1ISE AMLY
Licensa axpires: 3/31/1994
Copyright (C) i388-91 Galorath Associates, Inc. All Rights Reserved. Page 4

: 153

) + ot T ARAONNLPY 20 RSO khe, DRGSR SR NN Akt bl WAk 7Y

Bibliogrcphy

1. Boehm, Barry W. Software Engineering Economics. Englewood Cliffs NJ:
Prentice-Hali Inc., 1981.

2. -----,and Philip N. Papaccio. "Understanding and Conitrolling Software
Costs," IE:EE Transactions cn Software Engineering, 14: 1462 - 1477 (October
1988).

3. Ourada, Capt Gerald L. Software Cost Estimating Models: A Calibration
Vaiidation, and Comparison. MS Thesis, AFIT/GSS/LSY/91D-11. School of

Systems and Logistics, Air Force Institute of Technology, Wright-Patterson AFB
OH, December 1991 (AD-A246677).

4. Gurner, Capt Robert B. A Comparative Study of the Reliabiiity of Function
Point Analysis in Scoftware Nevelopment Effort Estirnation Models. MS Thesis,
AFIT/IGCA/LSYI91S-2. School of Systems and L.ogistics, Air Force Institute of
Technology, Wright-Patterson AFB QOH, September 1991 (AD-A244179).

5. Daly, Capt Bryan A. A Comparison of Software Schadule Estimators. MS
Thesis, AFIT/GCA/LLSQ/90S-1. School of Systems and Logistics, Air Force
Ins taiuie of Technilogy, Wright-Patterson AFB CH, September 1990
{(AD-A229532).

& ilIT Research Institule. Tast Case Siudy: Estimating the Cost of Ada
Software Devslopmant. {.anbam MD: April 1989.

7. Office of the Assistant Secretary, Washington DC. Meniorandum; Air Force
Softwars Estimating Models. ALMAJCOM-FOAJCV, Direct Reporting Unit
Commanders, and Air Force Frogram Executive Officers, 11 May 1992.

8. Stewart, Rodriey D. and Richard M. Wyskida. Cost Estimator's Reference
Manual. New York NY: John Wiley & Sons, Inc., 1987.

9. Analytic Sciences Corporation, The. The AFSC Cost Estimating Handbook.
Reading MA: prepared for USAF, Air Force Systems Command (AFSC), 1986.

10. Department of Defense. Military Standard. Defense Svstem Software
Developn.ent. DoD-STD-2167A. Washington DC: GPO, 29 February 1988.

11. Schwerke, Robert S. Class handout, COST 291, Introduction to Cost
Analysis. School of Logistics and Acquisition Management, Air Force Institute of
Technalogy, Wright-Paterson AFB JH, Summer Shoit Quarter 1992,

3
b
. "J
3

1
A
1

I

i

i

|

!

12. SASET. Version 3.0, IBM, disk. Computer software tutorial. Martin
Marietta Corporation, Denver CO, 1990,

13. -Ferens, Daniel V. "New Perspectives in Software Logistics Support,”
Loqistics Spectrum, 4-8 (Spring 1992).

14. Putnam, Lawrence H. Measures for Excellence: Reiiable Software on Time,
Within Budget. Englewood Clitfs NJ: Prentice-Halt Inc., 1992.

15. Schlender, Brenton R. "How to Break the Software Logjam," Fortune, 120:
100-108 (September 1989).

186. 8rooks, Frederick P. Jr. The Mythicai Man-Month. Menlo Park CA:
Addison-Wesley, 1975,

17. - -=-- . "No Silver Buliet; Essence and Accidents of Software Engineering,”
Computer, 10-19 (April 1987).

18. Huff, Karen E. et al. "Quantitative Models for Managing Software
Development Processes," Software Engineering Journal, 17-23 (January 1986).

19. SEER User's Manual, Galorath Assnciates Incorpo: ated, L.os Angeies CA.
March 1991.

20. Kile, Raymond L. REVIC Software Cost Estimating Model User's Manual,
version 9.4, April 1991.

21. Symons, Charles R. Software Sizing and Estimating; MK il FPA (Function
Point Analysis). Chichester, England: John Wiley & Sons, Ltd., 1991.

<2. Ferens, Daniel V. and Robert B. Gurner. "An Evaluation of Three Function
Paint Models for Estimation of Software Effort," NAECCN Conference, May 1992.

23. Bruce, Phillip and Sam M. Pederson. The Software Development Project:
Planning and Manageinient. New York NY: John Wiley & Sons, inc., 1982.

24. ¢ wis, Alan M. et al. "A Strategy for Comparing Alternative Software
Development Life Cycle Models," |EEE Transactions on Software Engineering,
14: 1453-1461 (October 1988).

25. Rook, Paul. "Controlling Software Projects," Software Engineering Journal,
7-16 (January 1986).

26. Siiver, Dr. Aaron et al. SASET User's Guide, Version Number 2.0,
Publication R-0330-90-2, Naval Center for Cost Analysis, Department of the
! Navy, Washington DC: February 1990.

! 27. General Electric Company. PRICE-S Reference Manual. Moorestown NJ:
" GE-Price Systems, December 1988. y
\

28, ~---- . The Central Equations of the PRICE Software Cost Model.
Moorestown NJ: GE-Price Systems, undated.

29. Maness, Richard. Senior Software Engineer, Martin Marietta Corporation,
Denver CO. Telephone interviews. 4 May through 29 July 1993.

30. Otte, James. Software Engineer, PRICE Systems, Dayton OH. Personal
interview. 23 June 1993,

| 31. Otte, James. Class handout, IMGT 677, Quantitative Management of
’ Scftware. School of Logistics and Acquisition Management, Air Force Institute
of Technology, Wright-Patterson AFB OH, Fall Qua. ter 1992.

32. McRilchie, Karen. Scftware Technician, SEER Technologies Division,
Galorath Associates, Inc., Los Angeles CA. Telephone interview. 3 July 1993.

33. Gallora'h, Daniel. SEER-SEM Mode! developer. SEER Technologies
Division, Galorath Associates, Inc., Los Angeles CA. Facsimile transmission,
28 July 1993.

34. Kile, Raymond. REVIC Mocdel Developer. Telephone interview. 28 June
through 29 July 1993.

35. Otte, James. Software Engineer, PRICE Systems, Dayton OH. Untitled
internal report regarding relationship between PRICE-S and checklists
completed by the Software Engineering In: titute. Undated.

36. Lewis, Richard. Software Technician, SEER Technologies Division,
Galorath Associa. -, Inc., Los Angeles CA. Telephone interview. 9 July 1993.

f, | 37. SEER User's Manual, SEER Technologies Division, Galorath Associates
o incorporated, L.os Angeles CA. November 1992. \

38. Greve, Alan R., and others. The REVIC Advisor (REVAD): An Expert
. System Preprocessor to a Parametric ¢ oftware Cost Estimating Model. Defense
| Logistics Agency, Cameron Station VA, September 1991.

39. Fugate, Carol. Software Technician, PRICE Systems, Dayton OH.
Tel~phone interview. 30 July 1993.

40. Rowland, Sydney. A Comparative Analysis of the GE PRICE-S and the CE!

. System-4 Cost Estimating Models. Wright-Patterson AFB OH: ASD/YTFF, May
1992,

|
|
|
!

g VITA

Captain George A. Coggins (Andy) was born on 28 May 1965 in Okinawa,
Japan. He graduated from high school in Jacksonville, Arkansas in 1983 and

received the degree of Bachelor of Science from the United States Air Force

Academy in 1987. After graduation, he served five years as an Audit Team
‘| Leader a- the Area Audit Office at Kirtland AFB, New Mexico. Captain Coggins
then entered the School of Logistics and Acquisition Management, Air Force

Institute of Technology, in May 1992.

- ‘ . Permanent Address: 607 Caribbean Way
Niceville, FL 32578

Easbyosbaionian s iiddi

A BB T T) & T T At e

0 VITA

Captain Roy C. Russell (Chris) was born on 4 July 1966 in Ada,
Oklahoma. He graduated from Peoria High School, Arizona in 1984 and
received the degree of Bachelor of Science from the United States Air Force
Academy in 1988. After graduation, he served four years as an Audit Team
Leader at the Area Audit Office at Cannon AFB, New Mexico. He then enterad
the School of Logistics and Acquisition Management, Air Force institute of

Technology, in May 1992.

Permanent Address: 7620 West Beryl Ave,
Peoria, ~Z 85345

169

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pyblic reporting burden for this cottection of infarmation 15 estimated tc average 1 hour per :esporse, including the time for reviewing 1InstruLtions, searcning 2usting dutd $ources,
gathenng and maintaining the data needed, and completing and reviewsng the (ollection of information Send comments rn?ardlnq this burden estimate or any other aspect of tnr,
collection at intormation, including suggestions for redycing this burden to Washington rHeadquarters Services, Directorate for information Operations sna Reperts, 1215 Jeflerson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, ana to the Otti e of Management and Hudqget, Paperwori Reduction Projact (0704-0188). Washington, DC 20503,

SOFTWARE COST ESTIMATING MODELS: A COMPARATIVE STUDY COF
WHAT THE MODELS ESTIMATE

6. AUTHOR(S)
George A. Coggins, Captain, USAF
Roy C. Russell, Captain, USAF

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REFORT TYPE AND DATES COVERED .
September 1993 Master's Thesis l
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . . REPORT NUMBER

Air Force Institute of Technology

WPAFEB OH 45433-6583 AFIT/GCA/1.AS/935-4

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

Air Porce Cost Analysis Agency AGENCY REPORT NUMBER

John B. Donald
1111 Jetferson Davis Bwy, Suite 403
Arlington VA 22202

11. SUPPLEMENTARY NQTES

12a. DISTRIBUTION / AVAILABILITY STATEMLNY 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRALT (Maximum 200 words)

This effort developed a consolidated document which highlights and exomines
differences in definitions, assumptions, and methodologies used by the REVIC,
SASET, PRICE-S, and SEER-SEM cost models. The following research guestions were
investigated: (1) What differences exist between the cost models? (2) How do these
differences impact the resulting estime.es? (3) To what degree can we explain and
adjust for known differences between the cost models?

Seven specific areas were addressed: (1) software development phases, (2)
develoment activities and cost elements, (3) source lines of code and language
differences, (4) key model tributes and key cost drivers, (5) implications of
project size on model outp v, (6) impact of schedule compression and extensions,
and {7) distinctive charact: ‘istics of the model data bases.

A hypothetical baseline test case was doeveloped to determrmine if uvsers could
explain and adjust for known differences. It is the researchers' opinion that the
underlying oquations and model assumptions are so dissimilar that objective
normalization efforts ave virtually impossible for the average model user.

1A, SUBIECT TERMIS " 15 HUMBER OFF PAGES
Cost Estimates, Cost Models, Software (Computers), Comparison, 173
Models 18. PRICE COOE
17. SECURITY CLASSIFICATION [18 SECURIT. CLASSIFICATION | 19. SECURITY CLASSHICATION |20, LIMITATION OF A8STRACT
OF REPONHT OF THIS PAGF QOF ABSTRACT
Unclassified e lassified Unclassified Unnlimi tad
NSN 7940-01-.230-5500 Stanclard Yorm 298 (Rev 2-8Y)

prescoled by ANSE St 239.18
JUTEDH

e

AFIT Control NumberAFIT,/GCA/LAS/935—4

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis rescarch. Please retum completed questionnaires io: DEPARTMENT OF THE
AIR FORCE., AIR FORCE INSTITUTE OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT
PATTERSON AFB OH 45433-7765

1. Did this research contribute to a cumrent research project?
a Ycs _ b, No

2. Do you believe this research topic is significant enough that it would have been researched (or
contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No

3, The benefits of AFIT research can ofien be expressed by the equivalent value that your agency
reccived by virtue of AFIT performing the rescarch. Please estimate what this research would
have cost in terms of manpower and/or dollars if it had been accomplished under contract or if it
had buzen done in-house.

Man Years $

4. Often it is not possible to attach equivalent dollar values to research, although the results of
the research may, in fact, be important. Whether or not you were able to establish an equivalent
value for this research (3, above) what is your estimate of its significance?

a, Highly b. Significan: c. Slightlly d. OfNo
Significant Significani Significancc
5. Comments

Name and Grade Organization

Position or Title Address

